THE INFORMATION TECHNOLOGY & INNOVATION FOUNDATION

May 15, 2012

My Kingdom for a Hertz: Can Washington Keep the Mobile Revolution Going?

Panel Discussion on Capitol Hill

Richard Bennett Senior Research Fellow ITIF rbennett@itif.org

Our Sponsor

- Heinrich Hertz, 1857-1894.
- Built the first radio at Karlsruhe in 1886 to test Maxwell's equations
- Cycle per second is known as Hertz (Hz) in his honor.
- "In bulk, Hertz' experiments explain reflection, refraction, polarization, interference, and velocity of electric waves."
 Wikipedia

The Panel

- John Leibovitz, Deputy Chief
 Wireless Telecommunications Bureau, FCC
- Karl Nebbia, Deputy Associate Administrator NTIA Office of Spectrum Management
- Neil Fried, Chief Counsel, House Committee on Energy and Commerce
- Shawn Chang, Senior Democratic Counsel House Committee on Energy and Commerce
- Neeta A. Bidwai, Senior Policy Advisor, Senator Mark Warner
- Matthew Hussey, Legislative Assistant, Senator Olympia Snowe

The Mobile Revolution

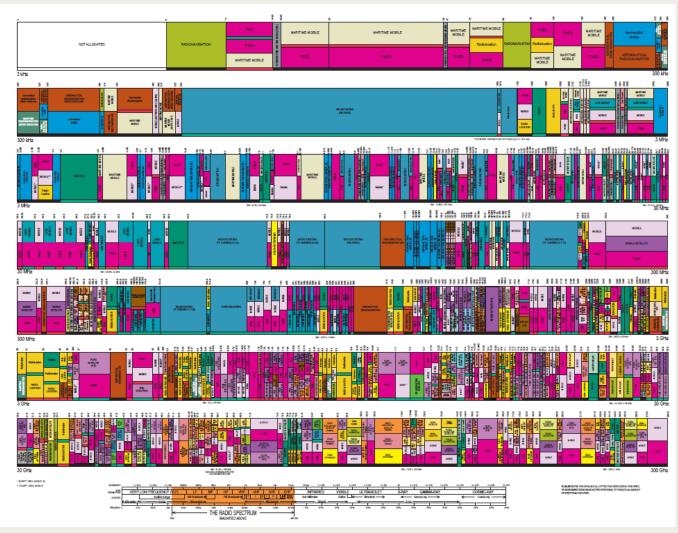
The Mobile Revolution marks a new era in computing.

 This revolution is powered by spectrum, microelectronics, and software.

Spectrum

- "Spectrum" is the range of Electromagnetic Radiation or Energy.
 - Radiation is charged particle energy moving in waves
 - These waves range in frequency from very small to very large
- Modulating pure sine waves enables them to carry information
 - These modifications distortions have to be intelligible by a receiver
 - Intelligible distortions are signal, others are noise
- Noise comes from natural sources and from reflections of signals off natural surfaces
 - Frequency determines whether a signal passes through or bounces off a given obstacle

Spectrum of Visible Light Refracted


Spectrum Propagation

- Propagation of EMR is a function of power, not frequency
- Power drops off with distance depending on propagation pattern or antenna directionality
 - Omni-directional antennas lose energy most rapidly
- Waves are reflected by barriers larger than the wavelength
 - Windows pass frequencies above ~500 MHz
 - Foliage scatters frequencies above ~4 GHz
- Modern cellular architecture is hierarchical
 - Large cells for coverage
 - Small cells within large cells for performance

FCC and NTIA Control Spectrum Rights

UNITED STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

Sharing Spectrum

- Commercial networks share "cooked" spectrum by user and application:
 - Very efficient sharing that allows > 95% utilization
 - Scheduling, CDMA, SDMA, and MIMO
 - Common coordination function makes it happen
- Shared use of "raw" spectrum is much more difficult
 - Management functions in various networks have to coordinate with each other before doing what commercial networks do
 - Commercial model works in this space too: Sharing by Contract
- Research will simplify sharing:
 - Medium term: Dynamic Sharing (LTE, Wi-Fi, White Spaces)
 - Long term: Simultaneous Sharing (SDMA, MU-MIMO and beyond)

THE INFORMATION TECHNOLOGY & INNOVATION FOUNDATION

Thank you!

rbennett@itif.org www.itif.org