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Abstract

Over the last 25 years, the proliferation of international research and development (R&D) net-

works has increased dramatically. However the importance of these networks for innovation remains

unclear. On the one hand network partnerships may have positive spillovers that increase innovative

productivity overall. Alternatively, competition over intellectual property within the network may

offset any positive spillover effects. In order to explore these issues further, I consider the effect of

large natural disasters on network partners to identify the causal importance of international R&D

networks in home-firm patent production from 1998 to 2008. My analysis reveals little broad based

effects of network disruption on home-firm patent production. However, disruptions to networks with

international subsidiaries, where any competition effects amongst network partners are likely small,

do reduce patenting by the home firm. A disaster impacting a subsidiary based network reduces

home-firm innovation output by 10-20% over the following three years.
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1 Introduction

Today, in the wake of the financial crisis, firms face ever tightening constraints in their quest to remain

profitable. Given a monopolistically-competitive setting, unless a firm innovates, the firm will cease

to earn profits. Without innovation by firms, macroeconomic growth will not occur and standards of

living will not increase (Romer, 1990). It has been proposed that R&D has positive spillovers, however,

recent evidence on the extent of these spillovers is unclear (Audretsch and Feldman, 1996; Azoulay

et al., 2010; Waldinger, 2011; Borjas and Doran, 2012). If spillovers are positive and significant, it

provides justification for government intervention to induce markets to produce socially optimal levels

of innovation. Generally, innovation can only occur at the culmination of human capital and knowledge

accumulation. This is referred to as the burden of knowledge, and the burden is increasing over time

for both individual researchers and firms in the business of innovation (Jones, 2009). This trend has

compelled firms to extend their boundaries when sourcing knowledge.

One way that firms have reacted to the increases in the burden of knowledge is through the increasing

use of teams in research (Jones, 2009; Wuchty et al., 2007). By hiring individuals who have highly

specialized knowledge and bundling complementary knowledge sets together, firms assemble teams that

are able to innovate. However, this leads to increased competition between firms over these specialists

and their knowledge. This, in combination with trends towards globalization and the proliferation of the

internet, has resulted in the market for ideas becoming a global one. Firms are now increasingly looking

abroad to find new ideas and individuals who can drive their firms forward with new ideas that can lead

to increased innovation. This has lead to a dramatic increase in international research and development

(R&D) networks (Narula and Santangelo, 2009).1

One reason for the push towards international knowledge networks is the diversity of knowledge

available abroad. This is substantiated by the work relating the impact of highly skilled immigrants

on native innovation by Kerr and Lincoln (2010), Hunt and Gauthier-Loiselle (2008), and Maskus et

al. (2010). All three studies show the high potential for knowledge spillovers and increased innovative

productivity associated with knowledge flows from abroad with estimates showing that a 1% increase in

highly skilled immigrants increases innovative output by approximately 15%.

Rather than simply attempting to attract these highly skilled individuals, firms are also actively seek-
1Griffith et al. (2011) show that distance and agglomeration economies are becoming less important except in a few indus-

tries such as pharmaceuticals where both laboratory and research locations (hospitals) must all be co-located. Agrawal and

Goldfarb (2008) shows that decreasing costs of communication has facilitated gains from trade through the specialization of

research tasks.
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ing them on their own turf. By creating international R&D networks, firms open their doors directly to

the probable sources of new knowledge. The networks generally take one of two forms. First, a firm may

choose to network by creating a subsidiary abroad. Second, the firm may choose to collaborate with an

existing foreign firm (Mudambi and Tallman, 2010). According to Mudambi and Tallman (2010), these

two settings have very different implications on knowledge flows within the network, yet there has been

no empirical inquiry as to the magnitude of these flows and potential spillovers.2 One reason for the lack

of prior research is that the measurement of the causal impact of networking on productivity in any form

is a difficult task. Because the choice to enter into a network is endogenous to the profit maximization

problem, firms that choose to network may be better suited to either invest abroad or work with other

firms. This makes a simple comparison of innovative productivity between those firms that network and

those that do not, an inappropriate approach. Therefore, to correct for the likely selection problem, a

plausible source of exogenous variation in networks must be found.

In order to best measure the causal effects of international R&D networks on home-firm innovative

productivity, I implement a difference-in-differences (DD) identification strategy. After selecting the top

1000 innovative firms (the home-firms) within the Organization for Economic Cooperation and Devel-

opment (OECD), I identify existing networks based upon co-patenting behavior from 1989-1998. I then

look at the impact of large-scale natural disasters that occur in the network-partner’s country from 1999-

2008 on home-firm patenting productivity. This shock effectively shuts down the existing international

R&D network for a time. In this way, I emulate the studies of Azoulay et al. (2010) and Waldinger

(2011) that consider the impact of an exogenous removal of a research partner on remaining researchers

productivity. However, I am able to expand the analysis by considering directly how competition over

ideas effects knowledge production.

As the burden of knowledge increases, firms will increasingly utilize knowledge sourcing networks

to bolster innovative activity. However, as competition over ideas increases, returns to networking will

decrease. It is the fact that these effects work in opposite directions that can explain why we see such

conflicting results in the prior literature. It is possible that in a given setting that either of these two

effects will dominate, or they may cancel each other out. In this study I look to shed light on this open

question, by separating the two effects and then identifying the causal impact of international networks

on home-firm innovative productivity. In addition, I look to reveal some of the possible mechanisms that

may impact the importance of networks in home-firm innovative production.

It is important to understand that intellectual property is non-rival only in an unregulated setting; in
2Bloom et al. (2007) show that high levels of output market rivalry can lead to a negative spillover that hurts firm innovative

productivity.
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that when one person receives knowledge from someone else, the first person’s utilization of the idea is

not lessened while the second person is made better off. This property made the existence of unregulated

markets in intellectual property impossible. If firms and individuals cannot capture the rents associated

with an idea, then they will not actively invest in the creation of new ideas nor actively pursue new

solutions to existing problems at the margin. It is because of this fact that intellectual property laws have

been developed including patents, copyrights and trademarks.

Today, as the markets for intellectual property have developed with property rights well-defined, in

practice, new innovation is clearly rival when working within the boundaries of the law. The development

of these markets has led companies such as Siemens to develop their business model in such a way that

they openly state that their intellectual property is their most valuable asset (Webel, 2011).3 It is because

of the current nature of intellectual property markets that guarding proprietary knowledge while seeking

new sources has become a profitable venture. Hitachi gives a prime example of a current market strategy

in intellectual property where it has developed an international patent management strategy where it

actively categorizes R&D investments based upon the projected level of importance (rivalry) associated

with the solution to the problem(Arai, 2000). The fact that ideas are indeed rivalry, can explain the

contradictory findings of prior work. It is by explicitly accounting for this fact that I intend to shed new

light on how knowledge flows and spillovers may be generated.

In order to achieve this, I identify networks that exist between the home-firm and subsidiaries as well

as those that exist with other firms. These two types of networks have very different structures when

considering competition and rivalry over new ideas (Abramovsky et al., 2005; Arai, 2000; Belderbos et

al., 2005). Subsidiaries are an extension of the home-firm itself, and thus competition over new knowl-

edge is unlikely. However, networks built between firms will potentially have a coordination problem

where both firms seek to exploit the network for its own interests. With my identification strategy I am

able to look at the analogue to Azoulay et al. (2010) and Waldinger (2011) as well as stratify amongst

these different types of networks to get an idea of how important competition over ideas is. If these net-

works are important inputs in patent production at home because of spillovers, then the DD estimate will

accurately measure their importance.4 However, if competition has a significant impact on knowledge

flows within a network, then additionally stratifying of the disasters between subsidiary networks and

between-firm networks will allow for further understanding into the causal impact of networking on in-

novative productivity.5 In addition, if monitoring and information costs affect the returns of networking,
3In a recent publication by Siemens AG, it was stated that the patents they hold are their most important asset; and “To main-

tain an edge in innovation on the international stage, companies need to utilize their global knowledge networks as effectively

as possible” (Webel, 2011).
4A network is a key input if the home-firm generally relies on knowledge spillovers in its proprietary innovative production.
5Networks that exist between firms is the similar to Borjas and Doran (2012) immigration effect on networking. However
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then looking into the effect of social and geographic distance on the innovative returns to networking is

of interest. Finally, the speed and proliferation of innovation is tightly tied to differences across industry,

and therefore an inquiry into the differential returns to networking by industry type is in order.

My findings point to the fact that competition within networks is highly correlated with the long term

importance of the network in home-firm innovative production. Specifically, I find that when a network

is comprised of multiple independent firms, there are no negative effects on home-firm patent output

when the network is shut down by a disaster.6 However, when the network is comprised of a firm and

international subsidiary, then a disaster has significant negative effects on home-firm patenting. Over the

following three years, home-firm patenting drops on the order of 10 to 20%, which reveals two things.

First, subsidiaries are key inputs in the home-firm’s patent production function, rather than being utilized

for a single project or other purpose. Second, because there is limited competition over potential R&D

discoveries within a subsidiary based network, all potential knowledge freely flows between researchers,

whereas in the between-firm networks competition mitigates this effect.

My results can explain the contrary results that exist in recent literature measuring potential spillovers

from networks. Azoulay et al. (2010) attempt to pin down the effects of networking on innovative pro-

ductivity within academia. By considering the unexpected death of a research partner in an academic

atmosphere, they find evidence of long-lasting knowledge spillovers. However, using a similar identifi-

cation strategy, Waldinger (2011) finds little evidence to support this fact. He shows that the unexpected

removal of high-quality peers in response to early laws passed by the Nazi regime have no significant

effect on the productivity of those who remain in academic research positions. These studies consider the

breakdown of an existing network with mixed results. Borjas and Doran (2012) consider what happens

when a potential network partner enters an existing research environment from abroad. They find that

in Borjas and Doran (2012), the incumbent researchers have no choice in the entrance of competitors. In my study, these

relationships do exist based upon mutual choices of both firms. However, even within this setting, competition and coordi-

nation is potentially a severe problem. Aghion et al. (2009) show similar effects to Borjas, in that new entry of potential

partners/competitors has differential effects depending upon the level of competition over knowledge that exists between the

players. Singh (2008, 2007), Song et al. (2011), Blit (2010) and Kim and Song (2007) all explore what drives collaboration be-

tween firms and the flows of knowledge between firms, specifically citing knowledge sourcing as playing a key role. However,

none explore causality between networks and innovative productivity. Abramovsky et al. (2005) show clearly that competition,

appropriability and government incentives play a key role in whether or not firms take part in international R&D networks. For

a nice review of the theoretical underpinnings for international collaboration see Veugelers (1998) or Audretsch et al. (1996).

In a recent study Griffith et al. (2006) do find significant evidence of spillovers between firms that network between the US and

UK.
6Miyagiwa (2009) shows that collaboration in R&D and product markets are tightly correlated in theory. Therefore, these

empirical findings fall inline with Miyagiwa (2009), in that networks more likely to be in competition over inputs as well as in

output markets do not show evidence of positive spillovers or long-term knowledge flows.
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the unexpected insurgence into the US of Soviet mathematicians after the breakup of the USSR actually

leads to significantly lower levels of innovative productivity amongst US researchers in similar fields.

These mixed findings highlight the importance of competition within the market for ideas on the pro-

ductivity levels of incumbent researchers. As described earlier, the rivalry nature of intellectual property

will potentially lead to very different flows of knowledge within different types of networks.

At the macroeconomic level, the results have bearing on policy maker’s incentive programs. Properly

identifying the settings in which spillovers do exist is critical, as it is only in these cases that government

subsidy may be an option in bringing R&D levels up to the socially optimal levels. 7 Also, if compe-

tition over ideas overshadows the positive impacts of overcoming the burden of knowledge, then policy

makers will need to adjust their incentive programs accordingly.8 The rest of the chapter will proceed as

follows. In Sections 2 and 3, I will describe the experimental setting as well as the data and explain the

identification strategy. In Section 4, I will specify the econometric model, present results and conclude

with checks of robustness and sample sensitivity. Finally in Section 5, I will conclude.

2 Setting, Data, and Identification Strategy

Before moving into the analysis, a brief discussion of the incentives faced by firms who source knowledge

abroad is worthwhile. All firms who source knowledge abroad face additional costs. Firms who use

wholly owned subsidiaries, pay all the fixed (potentially sunk) costs associated with the R&D process.

This type of network is built from the ground up, including all capital and labor costs, with all risk born

by the home-firm. In addition, all non-pecuniary costs including learning tied to cultural and market

characteristics in the international setting must be accounted for by either learning over time, or paying

additional workers with local specific knowledge.9 The benefit to this tactic, is that all knowledge sourced

by the subsidiary can flow freely back to the home-firm. Also, there is no added concern over leakage of

proprietary information. This occurs because there are well-aligned profit incentives across the network.

Therefore, any potential spillovers should be captured by the home-firm.
7It is clear that the government believes that positive spillovers exist as the National Science Foundation’s Partnerships for

International Research and Education program (PIRE) is currently funding over $55 million directly towards R&D projects that

are international in nature. In fact, a much larger endeavor is the European Commission’s Framework Research Programs (FP7).

The FP7 funds 32 billion Euros directly for the purpose of incentivizing collaboration amongst researchers from 2007-2013.
8Bloom et al. (2007) show that social spillovers are about twice as large from R&D than private, thus generating further

evidence that if incentives are well aligned, government support should be used.
9Standard problems with information security arise, but they are not unlike those faced at home.
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On the other hand, firms that partner with other firms abroad are able to share the substantial fixed

costs of R&D. This also mitigates the economies of scale necessary to perform research in certain fields

(Maez et al., 2009). Also, the home-firm will gain at least some access to the other firm’s proprietary

knowledge as well as benefits of reducing the non-pecuniary costs of learning a new market and culture.

However, there are two general categories of coordination problems that occur in networks comprised

of two firms (Veugelers, 1998). First, there is a question as to how potential profits will be split. This

arises because there are differences in the relative inputs that each firm introduces into the R&D process,

and assessing value of these inputs is difficult. Second, and key to this analysis, is the asymmetry of

information problem.10 From both the home-firm’s and the international partner’s perspective, limiting

unnecessary information leakage while maximizing knowledge attainment is the goal. This becomes a

game of semi-coordination and thus will have a less optimal equilibrium output of new knowledge when

compared to the subsidiary case ceteris paribus. However, it is possible that even given the coordination

problem, the potential for the total amount of knowledge flow and spillovers between firms is so great that

it could lead to between firm networks generally having more importance in the home-firms innovation

production function. Therefore, it remains an empirical question as to which form of network is relatively

more important to home-firm innovative productivity.11

No matter the network structure, monitoring costs and barriers to knowledge flows will exist. It is

generally true that the further away the network partner or subsidiary is from the home-firm, the more

difficult it will be to actively monitor operations (Tuuananen et al., 2011). This carries with it two

implications. First, efficiency may fall the further away the home-firm is. However, firms may know

this before starting the network, and therefore only enter into the relationship if the probable returns are

higher. Therefore it is an empirical question as to which factor is stronger, or if distance has a significant

impact at all. In addition, if cultural or societal differences lead firms to produce R&D in different

ways, then it may be difficult to utilize the network for knowledge sourcing. Therefore in addition

to geographic barriers, social distance may be a factor that impacts potential returns. If the network

exists between firms in countries where language or cultural differences are large, then the same two
10 If two firms are direct competitors in the market for ideas, then there will be a tenuous relationship where each firm will

only want to share what they have to while attempting to glean as much as they can from the other. Even if the two firms deal in

markets that are generally complimentary there is still potentially a similar problem. If it were possible to identify the level of

knowledge complementarities between the home-firm and international partner, I would be better able to identify even further

the levels of competition over ideas.
11Griffith et al. (2004) show that there are indeed two very different incentives at play in between-firm networks where both

innovation as well as extraction of knowledge from the partner is a goal. If firms can legally replicate proprietary technology,

it gives them entry into markets where real profits are feasible. Lerner and Malmendier (2010) illustrates the complicated

structures of contract design that are necessary to optimally protect profits and guarantee appropriability. Aghion et al. (2002)

show how the level of competition directly impacts the incentives to innovate.
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implications will hold as with geographic distance. Efficiency may fall, but if firms know this before

entering into the network, they may only enter if the potential returns outweigh the perceived risks. It

remains an empirical question as to how these potential costs, stemming from geographic and social

distance, affect innovation outcomes.

Finally, because competition for new ideas is potentially different between industries, there could be

differential effects to home-firms based upon the types of innovation they are involved in. Firms that

find themselves in frontier industries will experience two effects. First, the level of competition over new

ideas is greater, therefore frontier industries should have more international R&D networks. However,

finding new information will potentially be more difficult, limiting the effectiveness of these networks.

However, if firms accurately predict these costs beforehand, then they will only enter into networks

where the probable returns are justified. So, again, it remains an empirical question as to which effect is

dominant.

2.1 Sample

The sample of home-firms are the 1000 most innovative firms in the OECD and EPC based upon average

patent counts per year.12 Specifically, I only consider firms within the OECD and EPC as of 1989.

The choice is primarily based upon the fact that I do not want major changes in trade channels to drive

networking choices amongst the home-firms. Second, because most firms patent very infrequently, it

is highly unlikely that they will produce or absorb knowledge spillovers through networks. As a result,

estimation based upon the 1000 most innovative firms, those firms that actively take part in the innovative

process, is fundamental.

Because countries vary widely in infrastructure and property rights enforcement, I focus on a set of

firms located within countries of similar characteristics. This is clear motivation for including only firms

whose primary location is in the OECD or EPC as of 1989. Incentives to patent and the expectations

tied to those patents are similar and evolve similarly amongst these countries over the time period in

the analysis. Also, clarity is added to the statistical inference by only comparing like-firms that exist in

countries with similar infrastructure.

When considering which firms to include in the analysis, it is clear that those firms who regularly

innovate and are responsible for most of the patent applications filed are most likely to create, as well as

be recipients of spillovers from collaboration. Also because the data on firm-level innovation is highly
12I have utilized citation-weighted patents as an alternative metric and the sample is not highly sensitive to the change.
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skewed in a similar fashion to individual patent data, it is sensible to concentrate efforts on the regular

innovators (Azoulay et al., 2010).13 Specifically; inference would be murky at best if firms that only

innovate on an extremely limited basis were compared with highly innovative firms such as Toyota, IBM

or Siemens. It is important to note that even after limiting to the top 1000 innovative firms, there is still a

wide range of innovative productivity. However, inference throughout the analysis is made significantly

clearer using these selection criteria from which the treatment and control groups will be identified.

Finally, the time period is chosen due to both theoretical and data constraints. The treatment period is

from 1999 through 2008. A critical technological change which dynamically influenced information and

transaction costs around the world was the introduction of the internet and email (Agrawal and Goldfarb,

2008). By 1999, adoption of these technologies, as well as high-speed transmission of data utilizing

the internet was no longer new amongst firms located in the OECD, and thus should not dramatically

influence the results of the analysis ().14 Thus, the reason this time period is selected is that it is primarily

post-internet. In addition, the primary data source only extends with complete records through 2008, so

this is implemented as the final year of the study.

2.2 Primary Data

The primary data is from the European Patent Organization (EPO). The data source is the April, 2010

snapshot of the EPO Worldwide Patent Statistical Databases (PATSTAT). PATSTAT is a snapshot of the

EPO master documentation database with worldwide patent activity coverage. It has 20 tables, includ-

ing bibliographic data, citations and family links.15 It is specifically designed to be used for statistical

research.

From PATSTAT I extract all patents and application data on firms located in the OECD and EPC.

I then restrict the sample to patents filed by firms rather than individuals. Next, I drop all patents filed

with authorities other than the EPO, including all patents filed with the USPTO. This is a key data choice

within the framework of my analysis.16 The theoretical reason for the use of only EPO patent filing data
13There are a total of 66708 firms in the patent data from 1989-2008. Therefore, selecting the top 1000 is the same as

considering the top 1.5% of patenting firms. To highlight the skewness of the distribution of patenting, consider that the top

1.5% of firms produce 48% of all patents from 1999-2008.
14I utilize time fixed effects for all specifications which should control for any global trends due to technological change,

economic trends or otherwise.
15A patent family is a unique identifier given to identical patents filed within multiple organizations such as the EPO and

USPTO. Some firms will file with the EPO and subsequently file with the USPTO depending upon their marketing and compet-

itive production strategies. The patent family identifier allows the researcher to limit duplicate counts of the same innovation.
16For details on data acquisition and computing requirements, see the PATSTAT website. As the data acquisition and com-

8



is as follows.

I measure the effect of collaboration on innovation productivity directly, and accurately measuring

the timing of the network effects is key. Although there is no perfect measure of the moment that

innovation takes place, patent application dates within the EPO are the best proxy available on a global

scale. The reason that this is the case is that patents in the EPO are given rights based upon the filing

date, not the date of discovery. In other words, it is a first-to-file incentive system. This is very different

than the setting in the US, where a firm can capture existing patent rights from another party if it can

prove that it had produced the idea first. In addition, if a firm publicly displays, publishes, or files for a

patent elsewhere regarding a new technology, then the EPO will not consider the application. Therefore,

when patenting with the EPO, there is a very clear incentive to file the patent application as soon as

possible after innovation occurs. This is quite different when comparing to the USPTO and most other

patent organizations, ceteris paribus. Also, PATSTAT includes actual filing dates which are critical to

identification of spillovers in a time based analysis, which are not available in the USPTO data.17

Finally after selecting the appropriate patents from which the sample of firms will be selected, con-

sideration is given to cleaning the data to ensure that only one identifier per firm is included. First, it

is possible that multiple unique firm-identifiers in PATSTAT are actually the same firm. This can occur

because of small discrepancies in the text-based name field. Combining these multiple identifiers into a

singleton is an obvious solution to this problem. However, it is also crucial to ensure that firms whose

IDs are combined not be subsidiaries of each other. Because I am interested in identifying the spillovers

of international R&D networks, if subsidiaries are not identified appropriately, the potential effects on

the results are not trivial. Rather, as outlined previously, the incentives and flow of information between

the home-firm and a subsidiary are potentially quite different than in between-firm networks.18

There is a concern that large multinational corporations might directly manipulate which entity within

the conglomerate files the patent strategically, which would cause concern as to whether the results are

interpreted as spillovers, or if they are simply a direct effect. However, it is an important fact that patents

are originally assigned to the original inventor of the new innovation. Only after a patent is granted would

a corporation strategically consider changing ownership of the patent rights to a different branch of the

company or a holding company due to strategic concerns. The fact that the original assignee, by law, is

the inventor or inventors direct employer mitigates any concern that the patent counts at home firms are

piling is not trivial, it is important for researchers new to the EPO data to consider resource limitations before attempting its

use.
17For an excellent discussion of the incentives for patenting see Hall (2008).
18For a detailed discussion of the use of international collaboration as knowledge sourcing see Belderbos et al. (2005). For a

detailed discussion on the use of international expansion through the use of subsidiaries see Blit (2010).
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somehow capturing work done at alternative locations.19

Following the technique outlined in Melamed et al. (2006), I create an algorithm that codes probable

duplicate unique identifiers based upon naming conventions and the reported firm locations. Specifically,

after running the name-based portion of the matching algorithm, firms that are coded as probably matches

are then compared based upon location. If both the name and location match, the unique identifiers are

combined. However, if the locations are different, I code the firm with the highest patent count as a

potential home-firm while the other is coded as a subsidiary.20 I then create the outcome variable; a patent

count indicator and sum it at the annual level. I create two additional permutations of the outcome, one is

high-impact patent counts where I measure high-impact has having greater than five forward citations.21

Next, I simply weight each patent by its total forward citations.22 After sorting the 66708 firms and

keeping only firms whose location is in the OECD or EPC, I am able to identify the top 1000 innovative

firms. This set of firms will be referred to as the home-firms throughout the analysis.

2.3 Network Dyads: Construction and Considerations

Critical to the study is the identification of the existing international R&D networks. Classification of

each home-firm’s patent based upon the network characteristics present in the paten application is the pri-

mary way in which data for the analysis is organized. Again, it is by looking at the impact of large-scale

disasters on a home-firm’s existing network partners that I will be able to identify network importance

in innovative productivity. I identify networks by considering patents filed prior to the treatment period.

The source of the network dyads is the set of all patents filed from 1989 through 1998, which will be

referred to throughout the analysis as the network building period.23

19This is verified in Chapter 2, Article 60 of the 14th edition of the European Patent Convention and in Chapters 300 and 400

of the USPTOs Manual of Patent Examining Procedure. In addition, further evidence is available in the ipHandbook of Best

Practices, Chapter 10.6:“A Guide to International Patent Protection,” located online at www.iphandbook.org Manual of Patent

Examining Procedure (MPEP) (2010); European Patent Convention (2010); Krattiger et al., eds (2007-2009).
20While further development of the firm-matching/firm-filtering algorithm is possible, the use of the frequency of patent

attribution as a proxy for primary status is reasonable. For a detailed discussion of how the algorithm was generated see

Melamed et al. (2006).
21Hall et al. (2009) indicates that patents with lower citations may have lower market value.
22Waldinger (2011) uses this metric to look at the quality of patents, not just the proliferation.
23By identifying networks from prior-copatents, I am presenting a more general approach than prior studies such as Narula

and Santangelo (2009), which only considers formal alliances. By using copatents, I am able to identify a broad array of

relationships that may exist amongst firms which is inline with current empirical and theoretical findings on network behavior

(Marinucci and Vergote, 2011).
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The initial process of identifying an innovation network is straightforward. From all patents filed

during the network building period, I extract patents on which at least one of the home-firms, as defined

in the sample, is a contributor. This leaves approximately 48% of all patents filed.24 Then, I drop any

patent for which there is a sole contributing innovator, or any patent on which all contributing firms are

located in the same country. This leaves 2547 patents with 147 home-firms out of the top 1000 and 245

other firms from which collaboration networks are to be identified.

Coding network dyads from the potential network pairs is not a trivial undertaking. The appropri-

ate network dyad identification algorithm identifies and properly codes each network pair as either a

between-firm network dyad or a subsidiary dyad. This is a relatively simple task on patents that have

only two firms included in the filing. As previously stated, it must be that at least one of the firms on the

patent be a home-firm, and the two firms are located in different countries. Therefore on a patent with

only two authors there are either one or two network dyads that will be identified. If only one of the firms

is a home-firm, then one dyad is identified. If both firms are home-firms, then two unique network dyads

will be identified, one going in each direction where the potential network partners alternate between

being the home-firm and the international-partner. However, when three or more are included, properly

identifying and coding network dyads is not a straightforward task and justifies further illustration. To

show the permutations that are possible, and how I construct the unique network dyads, let us consider

two different hypothetical patents.25

First, consider a patent application with three firms listed; firm one is a home-firm based in Germany

(METO International GMBH), firm two is a home-firm based in the US (Sugen Inc) and firm three is not

in the sample and is from Australia (Biosignal LTD). From this set of three firms, four unique dyads will

be coded. First, firm one will be the home-firm while firm three is the international-partner. Second,

firm two will be the home-firm while firm three is the international-partner. For the third and fourth

dyads; firms one and two will alternate between being the home-firm as well as international-partner as

outlined in the simplest case.

Next, consider a more complex example of a patent with four firms listed: 1. Firm one is a home-firm

from France (Alcatel-Lucent), 2. Firm two is a home-firm firm from Germany (Standard Elektrik Lorenz

AG), 3. Firm three is a subsidiary of firm one located in France (Alcatel Cable) and 4. Firm four is not a

home-firm and is located in the US (Advanced Micro Devices Inc). From this set of four firms, six unique
24It is quite remarkable to consider that out of all firms who patent, the top 1000 are responsible for filing nearly 50% of all

successful patent applications. This, again, reveals how skewed innovation is at the international level.
25See Figure 3 in the Appendix of Additional Tables and Figures for a visual illustration of the dyads created from a similar

patent to that presented in third example.
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network dyads will be coded: 1. Firm one with firm four, 2. Firm two with firm four, 3. Firm one with

firm two, 4. Firm two with firm one and finally, 5. Firm two with firm 3. The last dyad between firm one

and firm three will be tagged as a subsidiary network is that between Alcatel Cable and Alcatel-Lucent.

After running the algorithm, I am left with 343 network dyads, 75 of which are classified as be-

ing subsidiary networks. It is through these dyads that network spillovers are identified. At this point,

I generate various network-dyad variables from the patent data. First, I generate a measure of the in-

ternational R&D network’s duration, which is simply the length of time between the earliest co-patent

and last co-patent observed between the home-firm and international-partner between 1989 and 2008. I

also generate a measure of network dyad productivity which is a count of the number of co-patents that

a particular network dyad produce. Additional network-dyad characteristics must come from external

data.26

The additional network characteristic data is introduced to measure both geographic and social dis-

tance between home-firms and their collaborative partners. As outlined, theory would indicate that dis-

tance may impact the returns to networking on home-firm productivity. The French research center

in international economics (CEPII) has generously made public a database which includes all bilateral

country distances as well as a myriad of social distance measures (Mayer and Zignago, 2006). The

social distance measures include border contiguity, language commonality and prior-historic common-

alities such as colonial roots.27 I merge these to the international network dyads by home-country and

partner-country. At this point, the data is prepared at the firm-level, ready to merge to the disaster data

and then the analysis can be completed.

2.4 Identification Strategy

In the ideal scenario I could randomly assign firms with similar characteristics to internationally collabo-

rate and not collaborate, then simply compare their levels of innovative productivity to reveal the impact

of R&D networks. This is the experimental setting that I intend to emulate with my quasi-experimental

identification strategy. In the network building period I have identified 343 international R&D network

dyads. Mirroring Azoulay et al. (2010) and Waldinger (2011), I will look at the impact of exogenously
26There is a question as to whether or not these networks exist in the treatment period. It is possible that a dyad that is

indicated from a co-patent in 1988 does not necessarily exist as a network that coordinates innovative activity in 2008. In this

case, the results would be attenuated towards zero, as I would be estimating a causal effect when there is no link. In further

sensitivity analysis, I use a relatively more strict definition of a network as one where the network dyad co-patents at least two

times, and find no significant difference in the results.
27Details on the data construction can be found on their website, as well as ready to use files for use in STATA.
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shutting down these networks on patent production. By looking at the dynamic effects, it will then

be revealed how important the different networks are in home-firm patent production. Specifically, in

the treatment period, I look at the impact of large scale natural disasters that occur in the international-

partner’s country on home-firm patent production. In order for the quasi-experiment to be valid, the effect

of the natural disaster on home-firm innovative productivity should only occur because of the existing

international R&D network.28

To illustrate the idea, consider the recent earthquake and tsunami that impacted Japan in March of

2011. Though day-to-day economic activity has mostly returned to normal, most of the infrastructure that

was destroyed has not yet been rebuilt as recovery is a slow and lengthy process (Ford, 2011). If a firm

based in the US had an existing R&D network with a firm in Japan, and the Japanese lab was impacted

by the earthquake or tsunami, then the natural disaster serves as a quasi-experiment of the exact type I

intend to emulate. The occurrence of a natural disaster exogenously shuts down the network, allowing

me to infer the causal effect of international R&D networks on home-firm innovative productivity.

The coefficient estimated will be that of a difference-in-differences identification strategy. Specif-

ically, the treatment group would be any home-firm whose international-collaborator is impacted by a

large scale natural disaster. The control group are those home-firms with existing international R&D

networks that are not impacted by any disaster. The causal effect of the international R&D networks

will be obtained from taking the difference in patent rates among those firms that are treated before and

after the disaster, and then comparing this with the difference in patent rates among those firms that are

not treated. In order to implement the DD framework, data on natural disasters must be merged to the

international dyad data previously constructed.29

The international disaster database (EM-DAT) is obtained from the Center for Research on the Epi-

demiology of Disasters (CRED) and is considered to be the most comprehensive source for data on

natural disasters available (de Louvain Brussels Belgium, 2011). The database includes all natural dis-

asters across the globe from 1900 to the present that meet at least one of the following criteria: 1. 10

or more people are killed, 2. 100 or more people need immediate assistance, 3. There is a formal dec-

laration of a state of emergency or 4. There is a call for international assistance. The database includes

data on the disaster type, country, and severity. The severity measures include number of people killed,
28It is worth noting that any disaster that impacts multiple countries in close proximity are coded separately. This allows me

to control for the fact that some disasters may not only impact the international-partner, but the home-firm directly.
29I have also considered using the entire set of the 1000 most innovative firms in the control group. However, this is not

the appropriate setting as most of the firms in the top 1000 can never be ”treated” as they are not involved with any firms

internationally through a network. In any case, firms are randomly assigned to these groups by the exogenous occurrence of

the natural disasters, fitting with the intended quasi-experimental design.
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number of people impacted, and the number of dollars ($US) in damage incurred. Because the data is

collapsed at the country level, the raw measures do not do a good job of scaling the disasters from one

country to another. I therefore convert all the severity measures to be per-capita, based upon the annual

country population. This will provide a standard relative measure of severity unlike the level data.30

Because the disaster data are highly skewed in the severity measures, I limit possible treatment to

those disasters in the 99th percentile of devastation in at least one of the three measures. This restriction

captures disasters that have the potential to destroy capital infrastructure (laboratories etc.) or interrupt

day-to-day economic activity at a level of severity that the international-partner’s activity will cease. In

addition, Cavallo and Noy (2009) shows explicitly that the EM-DAT database captures many small events

that are generally correlated with the level of government infrastructure and reporting ability. By using

only the top disasters in per-capita levels, I am able to identify only large events that are uncorrelated

with the database’s data capturing guidelines.

In order to appropriately utilize firm fixed effects I collapse the outcome data to the home-firm-annual

level. If the model were run with dyad-level outcome data, firm fixed effects could not be used, as the

model would be over-identified. Because I am measuring the outcome at the home-firm level, any firm

with multiple international connections would be used multiple times.

It is also important to consider how the disaster indicators are implemented. If a given home-firm

only co-patents with another firm one time while co-patenting 50 times with another, then disasters

should be weighted accordingly. In other words, the disaster indicator should represent the percentage

of a firm’s existing network that is actually shutting down. Therefore, if a home-firm only collaborates

with one other firm, then the disaster indicator would be 1 in all cases, as the home-firms entire network

is shut down if a disaster occurs. However, for a highly networked home-firm such as Siemens AG, a

disaster impacting Japan would only shut down a small percentage of its entire network. I thus weight

the country level disaster indicators by the proportion of the total network-driven patents a particular

network dyad is responsible for. Therefore, after weighting I am able to interpret the impact of a disaster

on home-firm patent output as the effect of shutting down an average network-partner.
30Disaster data is readily available at www.emdat.be. Population data is obtained from the Penn World Tables (Heston et al.,

2011).
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3 Descriptive Statistics and Trends

Before considering the econometric model and results, it is worthwhile to consider what the data looks

like. There are three tables of descriptive statistics to help illuminate how the outcomes and various

network dyad characteristics are distributed amongst the different sets of home-firms thus far considered

in the setting. Table 1 presents in column means and proportions for all 1000 top innovative firms and

then compares these measures between those home-firms who network and those who do not. Table 2

looks within only those home-firms that network and then compares those whose networks are impacted

by disasters versus those that are not. Finally, Table 3 looks within only those home-firms that network

and then compares those that have subsidiary based networks versus between-firm networks.

Specifically within Table 1, the first column presents descriptive statistics for the entire top 1000

innovative firms over the network building period from 1988 to 1998. In section (1), means for the three

outcome measures are presented. There are drastic differences in patent output between those firms that

network and those that do not by looking at columns (2) and (3).31 On all patents, we see that firms

that are part of international R&D networks patent approximately 8 times more than those that do not.

Even when only considering high-impact patents, those who network produce five times more.32 When

considering forward citation weighted patent counts, the same pattern holds as with raw patent count.

The fourth column present the t-statistic with H0 : Mean(2) −Mean(3) = 0, which shows that these

differences are statistically significant. So, networking firms do produce between 4 and 8 times more

successful patent applications per year. However, to place on this difference a causal interpretation may

not be correct. Again, this is because the networking decision is endogenous to the profit maximization

problem. The fact that there are significant differences does provide justification that networking itself

may be a key input into the patent production function at home, but is inconclusive.

The second section looks at the dispersion of patenting amongst selected International Patent Classi-

fications (IPCs).33 It appears that firms who network have a greater proportion of their innovation focus

amongst those fields that include innovation frontier industries such as nano-technology, bio-tech and

medical devices, and also information technology. As proposed, those firms that exist in industries with

higher levels of knowledge competition are forced to expand their knowledge sourcing efforts in order to

be competitive.
31See Figure 2 in the Appendix of Additional Tables and Figures for a histogram of patent counts per year amongst the 1000

most innovative firms.
32High impact patents are those with greater than 5 forward citations.
33See the table notes for a detailed breakdown of the IPC classifications. Further, IPC patent classifications are not mutually

exclusive, so these patterns may be indicative, but cannot be relied upon to be true proxies of industry.
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Finally, section (3) considers how patent counts may vary between firms located in different home-

countries.34 I present the distribution of patents amongst the three top patenting countries in the OECD.

Though there is variation in the average patent production between firms in the different countries, the

relative comparison between networked and non-networking firms is clear. In all three cases, networking

home-firms produce significantly more patents than the non-networked home-firms. Again, this is further

justification that networking does have positive effects on home-firm patent production, but cannot be

interpreted as a causal effect of international R&D networks.

In Table 2 the same format is presented with the broad category of all networked firms in column

(1) over the network building period. In columns (2) and (3) are those whose networks are impacted by

the natural disasters and those whose networks are not, respectively. On average there are differences

between the two groups. In section (1), I present the data on the outcome variables. Generally, the

treated firms tend to produce more patents. In section (2) it is revealed that those firms that are impacted

by disasters tend to have larger networks, which does increase the probability that a network disaster

will occur. These firms also tend to have stronger ties with their network partners. These differences

could be indicative that the identification strategy is in jeopardy, as based on the averages it appears that

those firms who’s networks are impacted by disasters are somehow different that the others. However,

because of the highly skewed nature of innovation production, having one firm that is far out on the tail

of the distribution located in either group will impact the average for the sub-group dramatically. In the

analysis, I present clear evidence on the dynamics that include firm fixed effects showing that pre-disaster

trends are not statistically significant. Finally, in section (3) the data shows that there are no significant

differences in the geographic dispersion or social distances between the two types of networks.

In Table 3, column (1) is the same as that of Table 2. Columns (2) and (3) stratify the networked

firms into those that are subsidiary-based and those that are between firms. In section (1) the data shows

that firms that have subsidiaries tend to produce about 4 times as many patents as those that partner with

other firms. In section (2) it is revealed that subsidiary-networks tend to produce more patents. The

home-firms that have subsidiaries on average have more network partners. Also, the length of time over

which the subsidiary networks are active is longer on average. This again does increase the probability

that the network is impacted by a disaster. The distance measures in section (3) are not significantly

different. Based upon the evidence presented in the descriptive statistic tables, and from the previously

outlined theoretical basis, consideration of the types of networks is of further interest when thinking

about the causal effect of international R&D networking on home-firm patent productivity.
34A between country comparison is outside the scope of this paper, as I am interested in general networking effects. However,

further research might look at how patent outcomes, networking and home-country may be related.
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4 Econometric Specification and Results

I present the econometric results in five sections. First, I introduce the estimation technique utilized

throughout the analysis and subsequently the model of interest. Second, I present an empirical justifi-

cation of the identification strategy. Third, I present the results of model of interest, including different

network and disaster specifications based upon the methodological considerations. Fourth, I look to dis-

entangle some of the possible mechanisms through which the main effect may be explained. I do this

by considering how different dyad characteristics impact the results including measures of distance and

industry proxies. Finally, I look to test the sensitivity of the model to various specifications, as well as

consider robustness of the model through introduction placebo treatments.

4.1 Estimation Technique

The outcome variables for innovative productivity are count variables, non-

negative and highly skewed. Specifically, I utilize either a firm-level count of successful patent applica-

tions in a given year, or the cumulative citations on patents occurring in a given year. I therefore utilize

a Poisson pseudo-maximum likelihood model (PPML) as developed in Silva and Tenreyro (2006). Silva

and Tenreyro (2006) show that the log-linear specification often used is not only less efficient, it can be

inconsistent when the dependent variable exhibits heteroscedasticity or has a significant number of zeros,

as does my data. The PPML estimator is shown to be both consistent and more efficient than the OLS

framework for count models with the characteristics my data carry.

The PPML method allows convergence even when the outcome variable has a large number of zeros

and/or the independent variables have high values. Further justification for the use of PPML includes

the fact that the negative-binomial and zero-inflated models are sensitive to the scale of the dependent

variable, giving different point estimates. This is important as I use three different outcome measures,

and comparability of the elasticity estimates is important. The PPML method does not have the same

inherent problems. Following the prior literature, such as Waldinger (2011), I directly implement the

PPML procedure as specified in Silva and Tenreyro (2011), an update to their prior work. It is reassuring

to know that the data does not have to follow a Poisson distribution in order for coefficient estimates to

be efficiently and consistently estimated using the technique. It only requires that the conditional mean

of the dependent variable be appropriately specified.35 Finally, because I utilize the PPML method, the

estimates are able to be interpreted as elasticities.
35This is a standard assumption based upon the law of large numbers and the central limit theorem.
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4.2 The Econometric Model

The model of interest relates innovative output of home-firm i in time t to disasters that impact

international-partner j′s country in time t− 1 through t− 4:

(1) yi,t = β0 + β1InternationalDisasterj,t−1 + ...+ β4InternationalDisasterj,t−4+

θ1HomeDisasteri,t−1 + ...+ θ4HomeDisasteri,t−4 + δt + γi + εi,t

where y is a measure of innovative output. InternationalDisaster denotes a binary indicator of a

large scale natural disaster impacting international-collaborator j. HomeDisaster denotes an binary

indicator of a large scale natural disaster impacting the home-firm i’s country.36 The δt is time fixed

effects, and γi are firm fixed effects. The use of both firm and time fixed effects are consistent with my

approach to analyze changes in i’s output following probable shut down of firm j. The time fixed effects

control for general changes in the technological and economic landscape. Also, the firm fixed effects

control for firm characteristics that could influence output including industry and firm size, location

and country-specific infrastructure and incentives. Finally ε is the error term, and standard errors are

clustered at the firm-level. 37

4.3 Empirical Basis for the Identification Strategy

Before implementing the model, it is important to validate the use of the DD estimation technique in two

ways. First, the disasters should impact the international-partner’s operations. Second, the treatment and

control groups in the quasi-experimental setting should have similar pre-disaster trends in the outcome

variables. In order to show the magnitude and impact on innovative productivity that these disasters

cause, I present Table 4. The model is as follows:

(2) yi,t = β0 + β1HomeCountryDisasteri,t−1 + ...

+ β4HomeCountryDisasteri,t−4 + δt + γi + εi,t

In this setting, yi,t represents a measure of macroeconomic activity. Here the outcome variables in

country i are regressed on disasters that occur in country i. This exercise is done to show that these
36This is simply to control for any home-country disasters, and eliminate the possibility that results be biased when a firm

who’s network is relative close is directly impacted by the disaster as well as the network.
37As described prior, the dyad data is weighted by its relative importance based upon the ratio of a given dyad’s patent

productivity to the entirety of a home-firms network driven patent count. This allows me to accurately collapse the data to the

firm level. Interpretations of the results are straight forward and are indicative of the effect of the home-firm’s average network

partner.
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disasters are large enough in scale to disrupt economic activity within a country as a whole. If this were

not true, then using natural disasters as a source of variation would be called into question. In column

(1), the outcome is NASA lights data that Henderson et al. (2011) have recently been shown to be an

excellent indicator of economic activity. Specifically, the outcome variable is a measure of the man-made

light that is observed by NASA satellites, which is then population weighted and summed at the country-

year level. The data shows strong negative effects that persist for at least three years on average.38 In

column (2) I present direct evidence that these home-country disasters do impact innovative productivity

of firms in that given country. The outcome variable is a count of successful patent applications summed

at the country-year level. It is revealed that the normal cycle of patenting and innovation impacted, where

the negative impact is implied one year after, but is large and significantly negative two years after the

disaster. Though the time it takes to take a new idea and convert it into a new patent varies, the time from

filing to grant is approximately two years, and this is confirmed by a 25% decrease in patent production

two years after the disaster, and rebounding thereafter. Clearly, these large scale disasters negatively

impact both economic activity and the innovative process, and thus will provide a compelling source of

variation for international R&D networks.

Next, I consider the pre-disaster trends amongst those home-firms with networks that are impacted

by disasters versus those that do not. The key difference between this test of comparability and that of

simply comparing the treatment and control groups based on averages is that I can include firm fixed

effects. As stated prior, when comparing raw averages, the random inclusion of a few highly productive

firms will dramatically skew the outcome. By running a dynamic comparison after removing the effects

of firm heterogeneity, we can see the corrected pre and post disaster trends. The results are presented

in Figure 1. Here I regress home-firm patent outcomes from three years prior to three years after the

international-disaster occurs within their network partner’s country. The model is as follows:

(3) yi,t = β0 + β1InternationalDisasterj,t+3 + ...+ β7InternationalDisasterj,t−3+

θ1HomeDisasteri,t+3 + ...+ θ7HomeDisasteri,t−3 + δt + γi + εi,t

The regression includes both firm and time fixed effects as well as controls for home-country disasters.

The standard errors (in parenthesis under the point estimates) are clustered at the firm level. After in-

cluding firm fixed effects, there are no statistically significant differences prior to the time of the disaster,

revealing compelling evidence that the identification strategy is indeed valid. In addition, this is the first

look at the model of interest. There is a weakly significant drop in home-firm patenting two years after

the disaster occurs. However, the estimate is only significant at the 10% level, and thus it is difficult to
38It has been brought to my attention that the fact that the data are not affected in the second lag could be a symptom of serial

correlation. However, the data includes a full set of time-fixed effects, so this is a feature of the data.
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say whether these networks are or are not key inputs into the home-firm innovative production function.39

4.4 Main Effects

Next, I present the model of interest and primary findings in order to answer the key question in the

analysis; whether or not there is evidence that international R&D networks are significant inputs in

home-firm innovation. The results are presented in Tables 5 through 8. In Table 5, the model is as

follows:

(4) yi,t = β0 + β1InternationalDisasterj,t−1 + ...+ β4InternationalDisasterj,t−4+

θ1HomeDisasteri,t−1 + ...+ θ4HomeDisasteri,t−4 + δt + γi + εi,t

In Table 5, each column is indicative of a separate regression, and all models include time and firm fixed

effects. In this model, the dependent variable is the successful patent application rate for all home-firms

that take part in international R&D networks, regardless of the type. This will therefore answer the ques-

tion in the most general case.40 In columns (1) through (3), the results are consistent. There does not

appear to be a significant effect of shutting down the international R&D network. This would indicate

that on average, these networks are not key inputs into the R&D production function of the home-firms.

However, there is a pattern that emerges. In the second year after the disaster, all point estimates are

negative, though imprecisely estimated. This leads us to consider more deeply the theoretical implica-

tions outlined prior. The incentives and costs associated that are faced by firms with subsidiary based

networks are potentially very different than those networked with other firms. I therefore present Table

6, where I separate the disasters into those that occur through subsidiaries, and those that occur through

between-firm networks. It is worth noting that many firms have both types, and therefore, I include the

full set of disasters in the model as follows:

(5) yi,t = β0 + β1IntlSubsidDisasterj,t−1 + ...+ β4IntlSubsidDisasterj,t−4+

τ1IntlCollabDisasterj,t−1 + ...+ τ4IntlCollabDisasterj,t−4+

θ1HomeDisasteri,t−1 + ...+ θ4HomeDisasteri,t−4 + δt + γi + εi,t

In this model IntlSubsidDisaster is a binary indicator that a disaster has impacted an international sub-

sidiary of the home-firm. IntlCollabDisaster is a binary indicator that a disaster has impacted another
39See Figure 4 in the Appendix of Additional Tables and Figures for a similar exercise using the entire set of top 1000

innovative firms based upon Table 1.
40As there may be unobservable time-trends that affect innovation, whether that be a market downturn or other, time fixed

effects will eliminate general trend changes from biasing the causal estimates. In addition, firm fixed effects will control for

firm heterogeneity including size, innovative potential, country and industry trends.
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firm within the network of the home-firm. Finally HomeDisaster is a binary indicator that a disaster

has occurred in the home-firm’s country. The results in Table 6 show a strong contrast between the effect

of subsidiary-network disasters and between-firm network disasters. There is significant evidence that

subsidiary-networks are key inputs of home-firm patent production, whereas between firm disasters are

insignificant in all specifications and all lags. Though the first column is imprecisely estimated, as we

move into columns (2) and (3) where the outcome is also theoretically weighted by a measure of quality,

the effect of subsidiary-network disasters are significant with large and persistent effects through the third

year post disaster. This is potentially indicative of the fact that the competition over ideas that occurs

between firms in the same network mitigates any possible spillovers to home-firms. Whereas within a

subsidiary-network, all useful knowledge is able to be channeled home, and the home-firm relies upon

the network to some degree for sources of new ideas.41

In Tables 7 and 8, I stratify the firms into those that have only between-firm networks, and those that

have only subsidiary networks. In Table 7 there are generally insignificant results, however an interesting

result occurs in the second column. Here it is inferred that home-firms actually increase their patenting

in the year just after the disaster while they fall in the same magnitude in the second year. It is reasonable

that this result is driven by the fact that firms that have only between firm-networks are able to “cash-in”

based upon their work with the other firms, but then they do falter in the year following. However, there

is no persistence, and the net effect as of just three years after the disaster is zero.

In Table 8, a very different story emerges. The model is run on home-firms that have only subsidiary-

networks.42 The results clearly demonstrate the negative, persistent and large impacts of a breakdown

in these networks on home-firm patent productivity. When a home-firm invests in an international sub-

sidiary, it is clear that the network is in fact a key input in home-firm innovative productivity. In fact,

the elasticities in this setting are extremely large, indicative of the fact that nearly all innovation within

the firm is tied to information or research being done in conjunction with the subsidiary. It is worth

noting that this is a special case, where the home-firm’s only network connection abroad is through the

subsidiary. In spite of this fact, it has been clearly shown that there are significant differences between

the two types of networks as inputs in home-firm innovative production.43

41The null finding on between-firm networks can be interpreted in at least two ways. First, it may be that home-firms are

able to substitute easily away from the resources provided in the network. Second, it may be that these networks are instigated

as knowledge sources, rather as market searches or for various other purposes. In either case, they are obviously not critical in

home-firm patent production.
42Note that the number of firms in this is quite small, with only 11 out of the 146 networking firms included. Yet, the results

are still precisely estimated.
43See Tables 12 and 13 in the Appendix of Additional Tables and Figures for detailed descriptive statistics of the relative

sets of home-firms and network dyads used in Tables 7 and 8. It has been suggested to look at a similar analysis with network-
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4.5 Possible Causal Mechanisms

Next, I consider how patent productivity varies with the different costs and incentives implied by different

network types and characteristics. First, I consider geographic and social distance. Theoretically, they

both may have a significant effect on the potential returns to networking abroad. Specifically, as distance

increases, so does the difficulty in monitoring and communication. However, as distance increases, there

is a potential that unknown knowledge sources will increase and or rivalry over the knowledge may

decrease due to limited output market competition. Second, I consider how industry type may play a

role in the incentives to network and the related returns to networking. In frontier industries, intellectual

property is potentially more valuable that in others, which would imply that the flows of knowledge

should vary by industry.

4.5.1 Geographic and Social Distance

As outlined in Section 2, geographic and social distance may affect the potential returns to knowledge

sourcing. However, whether these costs are anticipated prior to entering into the network is unclear.

To investigate this further I present Table 9. Here in columns (1) and (2) I stratify the home-firms by

above and below median geographic distance. In columns (3) and (4) I stratify the home-firms based

upon whether or not their network partner is located in a country with a common language to its own.

Interestingly, there are no significant effects present. It is not completely surprising to find no effect of

geographic distance within this setting. Once the distance between the home-firm and network-partner is

sufficiently large, further distance should not significantly affect the costs of monitoring. If the median

distance between firms were on the order of 10 or 20 miles, then the results might fall in line with the

work of Henderson et al. (1993) where it is found that distance plays a key role in knowledge spillovers.

However, because median distances are far greater, with a median distance of over 7000 miles, the

insignificant results are in-line with the existing theories of agglomeration.

Though the results in columns (3) and (4) are imprecisely estimated, in column (3) the point estimates

are significantly different than the rest in the table, being negative and relatively large in magnitude. Un-

fortunately, the number of firms that fit the stratification is quite small. If the estimates were significant,

it would imply that having a common tongue does significantly increase the potential spillovers from

international R&D networking. Unfortunately, without higher precision, making further inference would

co-patents as the outcome to better identify exactly which types of innovation are impacted by the quasi-network treatment.

Unfortunately, the sample sizes become extremely small and there is little variation from which to measure effects. Therefore

the results are insignificant.
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be unjustified.44

4.5.2 Industry Sensitivity

Finally, it is well recognized that different industries have very different trajectories when it comes to the

speed, proliferation and appropriability of new innovation (Audretsch et al., 1996). Industries such as IT

or biotechnology are considered to be at the frontier, with very high quantities and proliferation of new

innovation. However, appropriability of knowledge in these industries is often quite low. It is therefore an

open question as to how networking within industries may affect home-firm innovative productivity. In

Table 10, I stratify the model by considering effects within the three IPCs presented in Table 1: Human

Necessities, Performing Operations and Chemistry. Though these three IPCs are quite broad, they do

contain most utility patents filed within the frontier fields such as IT, bio-tech and nano-tech. The results

do not point to significant differences in the importance of networks as inputs across the different IPCs.

The results are imprecisely measured across all three IPCs; and though based on the point estimates

there are differences between the different categories in the importance of international R&D networks,

conjecture as to what may be driving them is all that is possible.45

4.6 Sensitivity Tests

As has been discussed, patenting and innovation is highly skewed. It is therefore reasonable to wonder if

the results are being driven by “super-stars.” In order to investigate this further, I consider a specification

where I remove the top 5% of patenting home-firms as well as the top 5% of the network dyads from the
44Unfortunately the sample size becomes too small to estimate the specification when stratifying amongst both between-firm

and subsidiary networks using this specification. However, I do present the same specification amongst only between-firm

networks, and find large and significant effects. The information can be found in Table 14 in the Appendix of Additional Tables

and Figures.
45In addition to the burden of knowledge motivation, a story that would support differences in network effects between

industries is their relative input factor weights between labor and capital. In industries that rely heavily upon capital goods

in research versus those that are labor intensive would have very different costs associated with expanding abroad through a

subsidiary versus partnering with another firm. These differences in labor and capital intensities would also affect how firms

react to a breakdown in the network. Labor intensive networks may easily substitute geographically by simply moving workers.

However, capital intensive industries would not be able to accommodate the shock as easily, leading to much worse outcomes

in the face of a disaster. In order to explore this further, firm-level industry information would be necessary and is beyond the

scope of this paper.
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sample and run the primary model.46 It may be that the top performers in R&D have such diversified

knowledge sources that they are able to adapt easily to changes in their network structures. It could be

that the null result in Table 4 is driven by this fact. The results are presented in Table 11. Columns (1)

through (3) consider the outcome without the top 5% of firms included, and columns (4) through (6)

without the top 5% of network dyads. None of the estimates are statistically significant, which lends

evidence to the fact that the estimation strategy is robust to the sampling decision employed throughout

the analysis.

5 Conclusion

I examine the role of international R&D networks in the innovation production function of firms. After

identifying existing international R&D networks from 1989-1998 within the OECD, I use large scale

natural disasters from 1999-2008 as a source of variation. Specifically, I look at how disasters that occur

in the country of a network partner affect home-firm patent rates in the years that follow. I do not find

broad based effects. However, I do find that networks built through international subsidiaries affect the

production of new ideas and patenting at home, whereas between-firm networks do not have a significant

impact. A disaster impacting a subsidiary based network implies a 10-20% negative impact on home-firm

R&D productivity over the following three years.

These results highlight the fact that competition over intellectual property is a key factor in whether

or not knowledge spillovers occur within networks. In the between-firm networks there is a coordination

problem (Mudambi and Tallman, 2010). Each firm attempts to extract as much information out of its

international partner while at the same time trying to only release the information absolutely necessary

to appease the partner. This conflict mitigates the flow of knowledge and therefore the home-firms cannot

rely on these networks as reliable sources of new knowledge. On the other hand, networks based upon

the expansion abroad through a subsidiary face no such coordination problem. Incentives between the

international partner and the home-firm are well aligned and information flows freely. This allows any

researcher within the entire network to capitalize on new information and build upon it. My results shed

light on the previously contradictory evidence of Azoulay et al. (2010), Waldinger (2011), and Borjas

and Doran (2012) on the direction and magnitudes of potential spillovers by studying the importance of

the potential competition over ideas between researchers within a given network directly.
46Just as firms can be classified by their total patent productivity, so can the network dyads. Here I simply look at how many

co-patents a given pair have filed together, and base this sampling decision on these counts.
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My results add to the growing literature on the underlying processes that drive innovation and growth;

however they should be interpreted cautiously. The study is based specifically upon existing international

R&D networks where both the home-firm and international partner have willingly worked together and

successfully patented in the past. The effects of exogenously moving a firm out of a network may not be

symmetric with the effect of a firm starting a new international R&D network. Therefore, to say that a

firm will see 10-20% increases in patent productivity if it opens an international subsidiary is inaccurate.

Rather, this study does specifically measure the losses in home-firm patent productivity associated with

the exogenous destruction of an existing international R&D network.47

Though careful consideration was made in identifying an appropriate quasi-experimental setting and

conservatively interpreting the results, many questions are raised and further investigation is justified.

A full investigation into industry impacts would be invaluable.48 Though I attempt to shed light on

the potential differences using the IPC classifications, this still leaves much to be desired. Because

IPC classification are not mutually exclusive nor do they map cleanly to industries, it is still unclear

how introduction of firm-specific industry data would impact the results. This information would be

especially valuable for firms.

It is clear, that internationally collaborative research efforts are increasing, and therefore identifying

the most productive international partners is integral for firm profitability in today’s global marketplace.

The results of this paper reveal that firms entering into partnerships abroad, or funding international ex-

pansion must consider carefully the potential impacts of knowledge competition on their intended profit

pursuits and knowledge sourcing efforts. If the goal is not to source knowledge, rather to gain market

experience and regional specific social capital, then it is unclear as to which type of network should be

sought. However, if knowledge sourcing is the role a firm intends to fill by networking internationally,

then utilization of a subsidiary will allow complete capture of the potential knowledge spillovers. For pol-

icy makers such as the European Commission or National Science Foundation, it is key to recognize how

competition over knowledge completely changes the way in which knowledge is shared amongst network

partners. Incentives must be well aligned amongst all the network partners or the positive spillovers will

potentially be mitigated. Somehow, these policy measures must incite all the firms involved in a given

project to share knowledge freely, otherwise the output produced will not be socially optimal.
47Unfortunately, it is hard to think of any instance in which the reverse circumstance would happen exogenously, making

direct measurement a difficult task indeed.
48Azoulay (2004) shows that firm organization, which is correlated with industry has a significant impact on whether or

not particular processes are outsourced. A further look into how industries, networking and innovation are related would shed

further light on his work. In addition, Peri (2005) shows that industry is tightly correlated to the amount of knowledge that

flows across boarder, and how far it may travel.
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6 Tables

Table 1: Descriptive Statistics for the Top 1000 Innovative Firms in the OECD
 

Top 1000 
Home-Firms 

with Networks 

Non-

Networked 

Home-Firms 

(2)-(3) 

t-stat 

[p-value] 

(1) (2) (3) (4) 

(1) Outcomes:      

Successful Patent Applications per Year 12 44 5 5.20 

 
(41) (90) (8) (0.00) 

Successful High-Impact Patent Applications per Year 

(>5forward citations per patent) 

6 20 4 5.21 

(19) (42) (9) (0.00) 

Forward Citations per Application per Year 45 162 20 5.20 

 
(150) (328) (30) (0.00) 

(2) Proportions of Patent Applications by Patent Type*:     

Human Necessities 32 52 29 7.0 

 
(46) (50) (45) [0.00] 

Performing Operations 43 56 41 4.72 

 
(50) (49) (49) [0.00] 

Chemistry, Metallurgy 34 63 29 11.1 

 
(47) (49) (45) [0.00] 

Observations 10000 1460 8540 10000 

(3) Successful Patent Applications Stratified by the Top 

and Bottom 3 Innovative Countries: 

    

United States 

N=2480 

7.9 28 4.7 2.72 

(22) (50) (9.6) [0.01] 

Germany 

N=2140 

12 55 3.9 2.45 

(54) (124) (3.9) [0.02] 

Japan 

N=1460 

23 73 6.6 3.47 

(63) (114) (8.4) [0.00] 

Notes: The sample contains one observation for each firm-year observation over ten years from 1999-2008. Outcomes are measured 

over the period.  The main entries in columns (1) through (3) are the mean of the selected variable. The entries in parentheses in 

columns (1) through (3) are the standard deviation of the selected variables. In section 1, outcomes are measured during the pre-

treatment period.  In section 2, patent classifications are not mutually exclusive. In section 3, firms are stratified by country and then 

means on the outcome variable are compared.  Reported t-statistics are obtained from a regression of the selected variable on an 

international-collaboration indicator variable. The only variables for which there are differences in sample sizes are those stratifying 

by firm location, for which sample sizes are indicated under the country name. 

*Patent Types are not mutually exclusive. A further breakdown of these three patent classifications shows that they include most 

industries at the frontier including nano-technology, bio-tech and medical devices and most IT. 

Detailed International Patent Classification (IPC) Breakdown: 

Human Necessities includes: Agriculture, Foodstuffs, Tobacco, Personal or Domestic Articles, Health: Life-Saving and Amusement. 

Performing Operations includes: Transporting, Separating: Mixing, Shaping, Printing, Micro-Structural, Technology; Nano-

Technology. 

Chemistry, Metallurgy includes All Combinatorial Technology. 
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Table 2: Descriptive Statistics for Home-Firms with International R&D Networks within the Top 1000
 

Home-Firms 

with Networks 

Disaster 

Impacted 

Networks 

Non Impacted 

Networks 

(2)-(3) 

t-stat 

[p-value] 

(1) (2) (3) (4) 

(1) Outcome:      

Successful Patent Applications per Year 44 62 17 3.62 

 
(90) (111) (26) [0.00] 

Successful High-Impact Patent Applications per Year 

(>5forward citations per patent) 

20 29 8 3.97 

(42) (52) (16) [0.00] 

Forward Citations per Application per Year 162 229 63 3.69 

 
(328) (405) (89) [0.00] 

(2) Dyad Characteristics and Controls:  
 

 
  

Per Dyad Patent Count 16 25 4 2.52 

 
(61) (78) (9) [0.01] 

Network Size (total number of co-patenters) 2 3 2 3.59 

 
(4) (3) (1) [0.00] 

Dyad Strength: 
 

 
 

 

% of Dyads: Close (>=10 co-patents) 16 22 7 2.9 

 
(34) (39) (25) [0.00] 

% of Dyads: Standard(10>co-patents>=3) 18 20 14 1.01 

 
(34) (35) (33) [0.31] 

% of Dyads: Casual(3> co-patents) 67 58 79 -2.99 

 
(43) (45) (39) [0.00] 

Duration and Recency: 
 

 
  

Duration of Collaboration (Years) 2 3 1 2.46 

 (4) (4) (3) [0.02] 

% of Dyads: Active Relationships 10 13 6 2.16 

 (29) (32) (23) [0.03] 

% of Dyads: Recent Relationships 14 15 12 0.99 

 (32) (33) (32) [0.32] 

% of Dyads: Old Relationships 76 72 82 -2.24 

 (40) (42) (37) [0.03] 

Measures of Distance: Geographic and Social 
 

 
  

Distance (Miles) 6277 6328 6201 0.19 

 
(3905) (3892) (3926) [0.848] 

% of Dyads: Contiguous Border 18 15 23 -1.27 

 
(36) (32) (41) [0.21] 

% of Dyads: Common Language 16 13 21 -1.24 

 
(34) (31) (39) [0.22] 

Observations 1460 870 590 1460 

Notes: The sample contains one observation for each firm-year observation amongst internationally networked firms over ten years 

from 1999-2008.  The main entries in columns (1) through (3) are the mean of the selected variable. The entries in parentheses in 

columns (1) through (3) are the standard deviation of the selected variables. Reported t-statistics are obtained from a regression of the 

selected variable on an international-collaboration-treatment indicator variable.  Observed differences in means amongst outcomes 

are driven by fixed characteristics of the firms.  Because of the highly skewed nature of innovative production, if the top producer of 

patents is randomly lumped into either the treated or untreated group, this single firm’s patent counts will sway the average patent 

counts of its group to be larger than the other.  For example, if the top 5% of patent producers are removed from the sample, the 

mean for collaborative firms that are treated and untreated respectively are: 14.2 and 9.3, and they are not significantly different from 

each other at the 5% level.  The same holds for the rest of the characteristics that are reportedly significantly different from each 

other.  The inclusion of firm fixed effects will remove this distortion.  See Figure 1 for an illustration of the dynamics between 

treatment and control groups with firm fixed effects which accounts for this distortion. 
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Table 3: Descriptive Statistics for Home-Firms with Subsidiary and Between-Firm Networks
 

All 

Collaborative 

Firms 

Home-Firms 

with 

Subsidiary 

Networks 

Home-Firms 

with Between-

Firm 

Networks 

(2)-(3) 

t-stat 

[p-value] 

(1) (3) (2) (4) 

(1) Outcome:      

Successful Patent Applications per Year 44 94 24 2.34 

 
(90) (140) (49) [0.02] 

Successful High-Impact Patent Applications per Year 

(>5forward citations per patent) 

20 36 14 1.98 

(42) (62) (30) [0.05] 

Forward Citations per Application per Year 162 345 93 2.38 

 
(328) (519) (172) [0.02] 

(2) Dyad Characteristics and Controls:  
 

 
  

Per Dyad Patent Count 16 38 8 2.42 

 
(61) (81) (50) [0.02] 

Network Size (total number of co-patenters) 2 4 2 2.5 

 
(3) (4) (1) [0.01] 

Dyad Strength: 
 

 
 

 

% of Dyads: Close (>=10 co-patents) 16 42 6 5.6 

 
(34) (44) (23) [0.00] 

% of Dyads: Standard(10>co-patents>=3) 18 16 18 -0.82 

 
(34) (28) (36) [0.41] 

% of Dyads: Casual(3> co-patents) 67 42 76 -4.91 

 
(43) (43) (40) [0.00] 

Duration and Recency: 
 

 
  

Duration of Collaboration (Years) 2 5 1 4.85 

 (4) (5) (2) [0.00] 

% of Dyads: Active Relationships 10 20 6 3.21 

 (29) (36) (24) [0.00] 

% of Dyads: Recent Relationships 14 16 13 2.17 

 (32) (32) (32) [0.03] 

% of Dyads: Old Relationships 76 64 81 -3.78 

 (40) (43) (38) [0.00] 

Measures of Distance: Geographic and Social 
 

 
  

Distance (Miles) 6277 6506 6189 0.33 

 
(3905) (3439) (4066) [0.74] 

% of Dyads: Contiguous Border 18 14 20 -1.29 

 
(36) (29) (38) [0.20] 

% of Dyads: Common Language 16 17 16 -0.27 

 
(34) (33) (35) [0.78] 

Observations 1460 400 1060 1460 

Notes: The sample contains one observation for each firm-year observation amongst internationally collaborative firms over ten years 

from 1999-2008.  The main entries in columns (1) through (3) are the mean of the selected variable. The entries in parentheses in 

columns (1) through (3) are the standard deviation of the selected variables. Reported t-statistics are obtained from a regression of the 

selected variable on an international-collaboration-treatment indicator variable. 
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Table 4: The Impact of Home-Country Disasters on Economics Activity and Innovative Productivity

Dependent Variable: ln(NASA Lights) i Patent Counti 

Estimation Technique: OLS PPML 

 (1) (2) 

Home Country Disasteri,t-1 
-0.106*** -0.205 

(0.019) (0.133) 

Home Country Disasteri,t-2 
0.058 -0.253*** 

(0.068) (0.094) 

Home Country Disasteri,t-3 
-0.297*** 0.001 

(0.077) (0.113) 

Home Country Disasteri,t-4 
0.076 -0.101 

(0.081) (0.186) 

Pseudo-Log Likelihood: -1150 -42500 

N: 1460 1460 

Mean of Dependent Variable: 2.11 29 

Notes: Source: Author’s Calculations.  Each column represents a 

separate regression. Standard errors are clustered at the country level 

and are in parenthesis.  The dependent variables are the log of the light 

density as measured by NASA and released by Henderson et al. (2011) 

and patent-counts summed at the country-year level.  Each time period 

represents 1 year.  All regressions include time and country fixed effects 

and controls for contemporaneous disaster effects.  Column (1) is 

estimated using OLS, and the dependent variable is the log-transform of 

the level lights data to give a point estimate of the elasticity.  In column 

(2) I present the OLS estimation of the regression of patent counts 

summed at the country-year level on the disaster indicator.  However, 

with count data that is highly skewed, a more appropriate structural 

model is that of the Poisson, and I use the Poisson-Pseudo-Maximum-

Likelihood estimation technique outlined in the section Estimation 

Technique. Effects are negative and significant especially in the two 

years following the disaster.  This shows the general economic 

downturn in economic activity tied with the large scale disasters used 

throughout the study. 

 

* indicates 10% level of statistical significance 

** indicates 5% level of statistical significance 

*** indicates 1% level of statistical significance 
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Table 5: The Affect of Internationalj-Network Disasters on Home-Firm Innovative Productivity

Dependent Variable: Patent Countsi 
High Impact 

Patent Countsi 

Citation 

Weighted  

Patent Countsi 

 (1) (2) (3) 

International Disasterj,t-1 0.001 0.025 -0.001 

 (0.083) (0.091) (0.082) 

International Disasterj,t-2 -0.063 -0.148 -0.101 

(0.085)  (0.091) (0.105) 

International Disasterj,t-3 0.005 0.063 0.041 

(0.171)  (0.186) (0.156) 

International Disasterj,t-4 0.020 0.0306 -0.006 

(0.118)  (0.135) (0.114) 

Pseudo-Log Likelihood: -9600 -5230 -37900 

N: 1460 1460 1460 
Mean of Dependent Variable: 44 20 162 

Notes: Source: Author’s Calculations.  Each column represents a separate 

regression.  Columns (1) through (3) are estimated using Poisson-Pseudo-

Maximum-Likelihood. PPML estimates are inferable as elasticities rather than 

levels. Standard errors are in parenthesis under all point estimates and are 

clustered at the firm level.  Dependent variables are collapsed to the sum at the 

firm-year level. All regressions include year and firm fixed effects as well as 

controls for home-country disasters and contemporaneous disaster effects. Similar 

to the findings presented in Figure 2, there is some, but limited evidence of short-

term spillover effects. There is no statistically significant evidence that spillovers 

occur in the medium run. 

 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance 
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Table 6: Differential Effects of Subsidiary and Between-Firm Network Disasters

Dependent Variable: Patent Countsi 
High Impact 

Patent Countsi 

Citation 

Weighted 

Patent Countsi 

 (1) (2) (3) 

International Subsidiary 

Disasterj,t-1 

-0.137 -0.113 -0.120 

(0.148) (0.228) (0.166) 

International Subsidiary 

Disasterj,t-2 

-0.136 -0.160 -0.196*** 

(0.089) (0.105) (0.070) 

International Subsidiary 

Disasterj,t-3 

-0.278 -0.444* -0.313* 

(0.200) (0.253) (0.185) 

International Subsidiary 

Disasterj,t-4 

0.030 -0.057 0.038 

(0.187) (0.244) (0.178) 

International Between-Firm 

Disasterj,t-1 

0.054 0.105 0.061 

(0.094) (0.087) (0.092) 

International Between-Firm 

Disasterj,t-2 

-0.072 -0.185 -0.110 

(0.111) (0.118) (0.109) 

International Between-Firm 

Disasterj,t-3 

0.075 0.172 0.132 

(0.224) (0.182) (0.205) 

International Between-Firm 

Disasterj,t-4 

0.078 0.054 0.031 

(0.145) (0.144) (0.148) 

Pseudo-Log Likelihood: -9560 -5190 -37600 

N: 1460 1460 1460 
Mean of Dependent Variable: 44 20 162 

Notes: Source: Author’s Calculations.  Each column represents a separate 

regression.  Columns (1) through (3) are estimated using PPML. PPML estimates 

are inferable as elasticities rather than levels. Standard errors are in parenthesis 

under the point estimates and are clustered at the firm level. Patent counts are 

collapsed to the sum at the firm-year level. All regressions include year and firm 

fixed effects as well as controls for home-country disasters and contemporaneous 

disaster effects.  Columns (1) through (4) present a regression where the dependent 

is regressed upon only disasters that occur to countries in which an international 

subsidiary to the home firm is located.  Columns (5) through (8) present a regression 

where the dependent is regressed upon only disasters that occur to countries in 

which a different firm is the collaborator.  It is critical to note that if a given home 

firm has both within and between firm collaborations in the same country, then only 

the net effect is identified. However, if a firm has does both intra and inter-firm 

knowledge sourcing in different countries, I am able to use this variation to identify 

the differential effects.  This will shed light as to what the effects of entering into a 

relationship with a competitor versus international expansion may have on 

knowledge sourcing. 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance 
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Table 7: The Affect of Internationalj-Network Disasters on Home-Firm Innovative Productivity: Only

Between-Firm Effects

Dependent Variable: Patent Countsi 
High Impact 

Patent Countsi 

Citation 

Weighted  

Patent Countsi 

 (1) (2) (3) 

International Disasterj,t-1 0.09 0.215** 0.12 

 (0.09) (0.09) (0.09) 

International Disasterj,t-2 -0.05 -0.211* -0.12 

(0.11)  (0.11) (0.12) 

International Disasterj,t-3 -0.03 0.14 0.06 

(0.21)  (0.22) (0.18) 

International Disasterj,t-4 0.10 0.04 0.04 

(0.16)  (0.16) (0.16) 

Pseudo-Log Likelihood: -4960 -2860 -18900 

N: 805 805 805 

Mean of Dependent Variable: 44 20 162 

Notes: Source: Author’s Calculations.  Each column represents a separate 

regression.  Columns (1) through (3) are estimated using Poisson-Pseudo-

Maximum-Likelihood. PPML estimates are inferable as elasticities rather than 

levels. Standard errors are in parenthesis under all point estimates and are 

clustered at the firm level.  Dependent variables are collapsed to the sum at the 

firm-year level. All regressions include year and firm fixed effects as well as 

controls for home-country disasters and contemporaneous disaster effects. After 

stratifying the sample to be home-firms that have only between-firm networks, we 

see relatively weak evidence of spillovers.  In fact, even in column (2) where there 

appears to be some evidence of an effect, the evidence is mixed. 

 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance. 
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Table 8: The Affect of Internationalj-Network Disasters on Home-Firm Innovative Productivity: Only

Subsidiary Effects

Dependent Variable: Patent Countsi 
High Impact 

Patent Countsi 

Citation 

Weighted  

Patent Countsi 

 (1) (2) (3) 

International Disasterj,t-1 0.41 0.419 0.40 

 (0.28) (0.31) (0.28) 

International Disasterj,t-2 -0.20 -0.331* -0.401* 

(0.21)  (0.17) (0.19) 

International Disasterj,t-3 -0.693*** -0.862*** -0.711*** 

(0.26)  (0.26) (0.24) 

International Disasterj,t-4 0.06 0.14 0.06 

(0.22)  (0.25) (0.28) 

Pseudo-Log Likelihood: -414 -285 -1470 

N: 110 110 110 

Mean of Dependent Variable: 44 20 162 

Notes: Source: Author’s Calculations.  Each column represents a separate 

regression.  Columns (1) through (3) are estimated using Poisson-Pseudo-

Maximum-Likelihood. PPML estimates are inferable as elasticities rather than 

levels. Standard errors are in parenthesis under all point estimates and are 

clustered at the firm level.  Dependent variables are collapsed to the sum at the 

firm-year level. All regressions include year and firm fixed effects as well as 

controls for home-country disasters and contemporaneous disaster effects. After 

stratifying the sample to be home-firms that have only subsidiary networks, we 

see relatively consistent evidence of spillovers.  Here we see that the home-firm 

does suffer a negative impact on patent production starting in the second year after 

their network incurs the disaster.  Large negative effects do imply that these 

home-firms do rely upon their network subsidiaries in the production of new 

innovation. 

 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance. 
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Table 9: The Interaction of Collaborative Disasters and Geographic Distance and Social-Distance

Dyad Characteristic: 
Distance from Average 

Collaborator 

Common Official Language 

of Collaborator 

Stratification Categories: 

Less than 

Median 

Distance 

Greater than 

Median 

Distance 

Country 

Shares 

Common 

Official 

Language 

Country 

Does Not 

Share 

Common 

Official 

Language 

Dependent Variable: Patent Countsi 

 (1) (2) (3) (4) 

International Disasterj,t-1 0.065 0.029 -0.095 -0.009 

 (0.142) (0.136) (0.194) (0.088) 

International Disasterj,t-2 -0.145 0.029 -0.191 -0.025 

 (0.180) (0.159) (0.230) (0.092) 

International Disasterj,t-3 0.164 -0.260 -0.163 -0.064 

 (0.308) (0.281) (0.281) (0.203) 

International Disasterj,t-4 0.059 -0.400 -0.323 0.079 

 (0.252) (0.252) (0.367) (0.154) 

Pseudo-Log Likelihood: -5240 -4080 -548 -6090 

N: 719 459 136 856 

Notes: Source: Author’s Calculations.  Each column represents a separate regression. 

Standard errors are in parenthesis and are clustered at the firm level.  Patent counts are 

collapsed at the firm-year level. Each time period represents 1 year.  All regressions 

include time and firm fixed effects and controls for home-country disasters and 

contemporaneous disaster effects.  Surprisingly, there is no evidence that distance plays 

a role in determining the relative impact of international R&D networks in home-firm 

patent production. 

 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance 
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Table 10: The Effect of the Collaborator-Disasters on Home-Firm Productivity Stratified by Patent Clas-

sification
Dependent Variable: Patent Counts 

IPC Classification: 
Human 

Necessities 

Performing 

Operations 

Chemistry, 

Metallurgy 

 (1) (2) (3) 

International Disasterj,t-1 -0.042 0.039 -0.061 

 (0.123) (0.095) (0.137) 

International Disasterj,t-2 -0.172 -0.135 0.019 

 (0.118) (0.097) (0.149) 

International Disasterj,t-3 -0.054 0.033 -0.099 

 (0.145) (0.172) (0.258) 

International Disasterj,t-4 0.193 0.084 0.221 

 (0.197) (0.189) (0.261) 

Frontier Measure: 

Proportion of Total 

Patents in Classification 

32 43 34 

Pseudo-Log Likelihood: -5370 -6000 -6380 

N: 602 668 728 

Notes: Source: Author’s Calculations.  Each column represents a separate 

regression. Standard errors are in parenthesis and are clustered at the firm 

level.  Patent counts are collapsed at the firm-year level. Each time period 

represents 1 year.  All regressions include time and firm fixed effects and 

controls for home-country disasters and contemporaneous disaster effects.  As 

previously noted, the different IPC classifications are not mutually exclusive 

as one patent may serve several purposes. There is no general significant 

difference amongst the effects based upon industry effects. 

 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance 
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Table 11: Removal of the Super-Star Firms and the Effect on the Main Result

Sample Adjustment:  
Bottom 95% Based on 

Home-Firm Patent Counts 
 

Bottom 95% Based on 

Dyad Patent Counts 

Dependent Variable: 
Patent 

Countsi 

High 

Impact 

Patent 

Countsi 

Citation 

Weighted 

Patent Countsi 

Patent 

Countsi 

High 

Impact 

Patent 

Countsi 

Citation 

Weighted 

Patent Countsi 

 (1) (2) (3) (4) (5) (6) 

International 

Disasterj,t-1 

-0.048 -0.038 -0.046 -0.007 0.017 -0.008 

(0.073) (0.084) (0.081) (0.083) (0.091) (0.083) 

International 

Disasterj,t-2 

-0.048 -0.134 -0.094 -0.061 -0.143 -0.096 

(0.087) (0.095) (0.078) (0.092) (0.107) (0.086) 

International 

Disasterj,t-3 

-0.004 0.028 0.013 -0.002 0.056 0.034 

(0.133) (0.130) (0.133) (0.184) (0.155) (0.169) 

International 

Disasterj,t-4 

0.050 0.041 -0.009 0.029 0.039 0.001 

(0.114) (0.101) (0.098) (0.140) (0.122) (0.123) 

Pseudo-Log 

Likelihood: 
-6800 -3820 -26100 -9000 -4870 -35400 

N: 1110 1110 1110 1100 1100 1100 

Notes: Source: Author’s Calculations.  Each column represents a separate regression. Standard errors are in 

parenthesis.  Patent counts are collapsed at the firm-year level. Each time period represents 1 year.  All 

regressions include time and firm fixed effects and controls for home-country disasters and contemporaneous 

disaster effects.  Here we see no evidence that the inclusion or exclusion of the "super-star" firms or 

networks impacts the null result found in Table 5. 

 

* indicates significantly different from zero at the 10% level of significance 

** indicates significantly different from zero at the 5% level of significance 

*** indicates significantly different from zero at 1% level of significance 
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7 Figures
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Notes: Source: Author’s Calculations. The trend line represents the differential output that occurs between firms whose collaborator is shocked by a 

disaster versus those whose collaborator is not.  Before the disaster, there is no statistically significant difference in trend between the two groups.  

There is limited evidence that spillovers occur, with only a short term statistically weakly significant drop in the second year after the shock.  

However, immediately thereafter, the trends between the two types of firms converge clearly both in terms of the point estimates and their statistical 

significance. The trend line is estimated from a single regression of the home-firm patent counts on large-scale natural disasters that impact their 

collaborative partners.  The regression follows the dynamic framework outlined in the section Setting, Data, and Identification Strategy with firm-year 

patent counts regressed on the collaborator-disaster from contemporaneous to both three years in the past and future.  The regression includes year and 

firm fixed effects, as well as home-disaster controls. The standard errors are clustered at the firm level. 
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Figure 1: The Effect of Collaborative Disasters on Home-Firm Innovative Productivity
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8 Appendix: Additional Tables and Figures

Table 12: Descriptive Statistics for Home-Firms with Only Subsidiary Based Networks
 

Home-Firms 

with Networks 

Disaster 

Impacted 

Networks 

Non Impacted 

Networks 

(2)-(3) 

t-stat 

[p-value] 

(1) (2) (3) (4) 

(1) Outcome:      

Successful Patent Applications per Year 20 23 13 1.3 

 
(18) (20) (10) [0.22] 

Successful High-Impact Patent Applications per Year 

(>5forward citations per patent) 

14 16 9.8 0.76 

(21) (25) (10) [0.46] 

Forward Citations per Application per Year 89 108 55 1.36 

 
(87) (98) (45) [0.20] 

(2) Dyad Characteristics and Controls:  
 

 
  

Per Dyad Patent Count 15 14 18 -0.27 

 
(22) (18) (27) [0.79] 

Network Size (total number of co-patenters) 1.1 1.2 1 1.54 

 
(0.35) (.41) (0.00) [0.148] 

Dyad Strength: 
 

 
 

 

% of Dyads: Close (>=10 co-patents) 42 44 40 0.13 

 
(49) (49) (49) [0.90] 

% of Dyads: Standard(10>co-patents>=3) 14 11 20 -0.41 

 
(35) (32) (40) [0.69] 

% of Dyads: Casual(3> co-patents) 43 45 40 0.18 

 
(49) (49) (49) [0.86] 

Duration and Recency: 
 

 
  

Duration of Collaboration (Years) 3.9 3.4 4.9 -0.56 

 (4.5) (4.1) (5.1) [0.59] 

% of Dyads: Active Relationships 15 11 22 -0.82 

 (35) (31) (42) [0.43] 

% of Dyads: Recent Relationships 21 25 12 1.77 

 (40) (43) (33) [0.10] 

% of Dyads: Old Relationships 64 63 66 -0.12 

 (47) (48) (48) [0.91] 

Measures of Distance: Geographic and Social 
 

 
  

Distance (Miles) 6432 7722 4108 1.67 

 
(3676) (2487) (4304) [0.12] 

% of Dyads: Contiguous Border 14 0 40 -1.75 

 
(35) (0.00) (49) [0.10] 

% of Dyads: Common Language 14 0 40 -1.75 

 
(35) (0.00) (49) [0.10] 

Observations 140 90 50 140 

Notes: The sample contains one observation for each firm-year observation amongst internationally networked firms over ten years 

from 1999-2008.  The main entries in columns (1) through (3) are the mean of the selected variable. The entries in parentheses in 

columns (1) through (3) are the standard deviation of the selected variables. Reported t-statistics are obtained from a regression of the 

selected variable on an international-collaboration-treatment indicator variable.   
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Table 13: Descriptive Statistics for Home-Firms with Only Between-Firm Networks
 

Home-Firms 

with Networks 

Disaster 

Impacted 

Networks 

Non Impacted 

Networks 

(2)-(3) 

t-stat 

[p-value] 

(1) (2) (3) (4) 

(1) Outcome:      

Successful Patent Applications per Year 24 34 13 2.4 

 
(49) (62) (20) [0.02] 

Successful High-Impact Patent Applications per Year 

(>5forward citations per patent) 

14 21 6 3.2 

(30) (38) (11) [0.00] 

Forward Citations per Application per Year 93 129 48 2.71 

 
(172) (216) (64) [0.01] 

(2) Dyad Characteristics and Controls:  
 

 
  

Per Dyad Patent Count 8 13 2 1.26 

 
(50) (67) (4) [0.21] 

Network Size (total number of co-patenters) 1.5 1.8 1.3 2.31 

 
(1.4) (1.8) (0.66) [0.02] 

Dyad Strength: 
 

 
 

 

% of Dyads: Close (>=10 co-patents) 6 8 2 1.49 

 
(23) (27) (1.5) [0.14] 

% of Dyads: Standard(10>co-patents>=3) 18 23 12 1.53 

 
(36) (38) (33) [0.13] 

% of Dyads: Casual(3> co-patents) 76 69 85 -2.21 

 
(40) (43) (35) [0.03] 

Duration and Recency: 
 

 
  

Duration of Collaboration (Years) 1.1 1.4 0.7 1.54 

 (2.4) (2.7) (2.0) [0.13] 

% of Dyads: Active Relationships 6 8 4 1.05 

 (24) (27) (20) [0.30] 

% of Dyads: Recent Relationships 13 13 13 0.24 

 (32) (32) (33) [0.81] 

% of Dyads: Old Relationships 81 79 83 -0.98 

 (38) (39) (37) [0.33] 

Measures of Distance: Geographic and Social 
 

 
  

Distance (Miles) 6189 6215 6156 0.07 

 
(4066) (4231) (3857) [0.94] 

% of Dyads: Contiguous Border 20 16 24 -1.00 

 
(38) (35) (42) [0.32] 

% of Dyads: Common Language 16 13 20 -0.88 

 
(35) (33) (38) [0.38] 

Observations 1060 590 470 1060 

Notes: The sample contains one observation for each firm-year observation amongst internationally networked firms over ten years 

from 1999-2008.  The main entries in columns (1) through (3) are the mean of the selected variable. The entries in parentheses in 

columns (1) through (3) are the standard deviation of the selected variables. Reported t-statistics are obtained from a regression of the 

selected variable on an international-collaboration-treatment indicator variable.   
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Table 14: The Effect of Between-Firm Network-Disasters on Home-Firm Innovative Productivity

Stratification Category: 
Common Official Language of 

Collaborator 

 

Country Shares 

Common 

Official 

Language 

Country Does Not 

Share Common 

Official Language 

Dependent Variable: Patent Countsi 

 (1) (2) 

International Disasterj,t-1 -0.903*** 0.133 

 (0.257) (0.100) 

International Disasterj,t-2 -1.100** 0.021 

(0.141)  (0.446) 

International Disasterj,t-3 -1.307*** -0.113 

(0.265)  (0.415) 

International Disasterj,t-4 -2.020*** 0.236 

(0.159)  (0.406) 

Pseudo-Log Likelihood: -385 -3980 

N: 116 626 

Mean of Dependent Variable: 44 162 

Notes: Source: Author’s Calculations.  Each column represents a 

separate regression. Standard errors are in parenthesis.  Patent counts are 

collapsed at the firm-year level. Each time period represents 1 year.  All 

regressions include time and firm fixed effects and controls for home-

country disasters and contemporaneous disaster effects.  There is 

evidence that social barriers are important.  However, without further 

inquiry into what the CEPII measure of common language is capturing, 

making strong claims based on this evidence is questionable. 

 

* indicates significantly different from zero at the 10% level of 

significance 

** indicates significantly different from zero at the 5% level of 

significance 

*** indicates significantly different from zero at 1% level of significance 
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Figure 2: The Distribution of Annual Patent Counts Among the 1000 Most Innovative Firms in the

OECD
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A=Top 1000 Innovative Firm 1

B=Top 1000 Innovative Firm 2

A=Subsidiary of Firm 1

C=Firm 3 (Not in the Top 1000)
 

 

  

If a disaster occurs in A, it will receive a weight of 1/3 

as only 1/3 of Firm B's potential knowledge comes from this source

Disaster Weighting

 

Dyads Created:

     Home-Firm International Knowledge Source

Dyad 1:A A and Copatents = 10 in building period

Dyad 2:A B and Copatents = 10 in building period

Dyad 3:A C and Copatents = 20 in building pe







 riod

Dyad 4:B A and Copatents = 10 in building period

Dyad 5:B A and Copatents = 20 in building period





 

Figure 3: Dyad Creation Illustration and Disaster Weights
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Notes: Source: Author’s Calculations. The trend line represents the differential output that occurs between firms whose collaborator is shocked by a 

disaster versus those unshocked.  Before the disaster, there is no statistically significant difference in trend between the two groups.  There is 

significant evidence that spillovers occur in the second year.  However, immediately thereafter, the trends between the two types of firms converge 

clearly both in terms of the point estimates and their statistical significance. The trend line is estimated from a single regression of the home-firm 

patent counts on large-scale natural disasters that impact their collaborative partners, whether subsidiary or not.  The regression follows the dynamic 

framework outlined in the section Setting, Data, and Identification Strategy with firm-year patent counts regressed on the collaborator-disaster from 

contemporaneous to both three years in the past and future.  The regression includes year and firm fixed effects, as well as home-disaster controls. 

The standard errors are clustered at the firm level. 
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Figure 4: The Effect of Collaboration Shock to Collaborative firms Versus All Other Firms in the Top 1000
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Notes: Source: Author’s Calculations. The trend line represents the differential output that occurs between firms whose collaborator is shocked by a 

disaster versus those unshocked.  Prior to the disaster the data is noisy with large movements around the horizontal axis, but with no pattern.  In the 

year prior and disaster year, trends between home-firms whose subsidiaries are impacted and those who are not are statistically zero.  There is 

significant evidence that spillovers occur in the second and third years after the disaster.  However, immediately thereafter, the trends between the 

two types of firms converge clearly both in terms of the point estimates and their statistical significance. This is inline with the recovery period 

experienced after large scale disasters. The trend line is estimated from a single regression of the home-firm patent counts on large-scale natural 

disasters that impact their collaborative partners, whether subsidiary or not.  The regression follows the dynamic framework outlined in the section 

Setting, Data, and Identification Strategy with firm-year patent counts regressed on the collaborator-disaster from contemporaneous to both three 

years in the past and future.  The regression includes year and firm fixed effects, as well as home-disaster controls. The standard errors are clustered 

at the firm level.
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Figure 5: The Effect of Disasters on Subsidiary Networks
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