

Accelerating Sustainability

Demonstrating the Benefits of Transportation Technology

Anthony Shaw

Goals

- Directly compare the benefits of various technologies
- Demonstrate the potential fuel consumption and emissions savings
- Illustrate through real world "use cases"

Technologies

- 16 transportation technologies
- Four technology categories:
 - 1. Vehicle Technologies
 - 2. Traveler Information Technologies
 - 3. Infrastructure and System Operations
 - 4. Alternative Fuel Technologies

Projections

- Two measures:
 - Carbon dioxide (CO2) emissions
 - Fuel consumption
- Two scales:
 - For a single vehicle
 - On a national scale
- 10 years

Results

- Magnitude of first-order benefits:
 - Eco-navigation: 100 million barrels of oil, 18 million metric tons of CO2 in final projection year
 - Gas-electric hybrids: over 400 million barrels of oil, 30 million metric tons of CO2 in final projection year
- A "tool kit" with which to make the case for intelligent transportation
- A model that can be updated as new data becomes available

Cooperative-Adaptive Cruise Control

- How it works:
 - Based on currently available technology
 - Grouping vehicles into a "platoon"
 - Improves efficiency on the highway
 - Aerodynamics!

Cooperative-Adaptive Cruise Control

- Magnitude of first-order benefits:
 - 1,000 lbs./year of CO2 for a single heavy duty vehicle
 - 100 lbs./year of CO2 for a single light duty vehicle
 - 7 million metric tons of CO2/year in final projection year

Cooperative-Adaptive Cruise Control

- Conclusions:
 - Wireless connectivity triples efficiency
 - Safety/mobility application, environmental benefits
 - Recent regulatory activity from U.S.
 DOT shows that government supports underlying technology

Real-Time Adaptive Signal Control

- How it works:
 - An enhancement of previous adaptive systems
 - Optimizes signal timing plans
 - Informs downstream intersections
 - Best for unforeseen, unpredictable, or conflicting traffic patterns

Real-Time Adaptive Signal Control

- Magnitude of first-order benefits:
 - Around 2 million metric tons of CO2 per year
- Conclusions:
 - Mobility application, environmental benefits
 - Currently deployed in Pittsburgh, PA

Use Cases

- Traffic Signal Synchronization in Los Angeles County, CA
- Real-time Adaptive Signal Control in Pittsburgh, PA
- Advanced Fleet Management at the Smithsonian Institution
- Smart Parking in Ellicott City, MD

Conclusions

- Tremendous first-order benefits if applied on a national scale
- Modular "tool kit" that can be tailored to audience
- Mobility and safety applications also benefit the environment
- Government support for underlying technologies

Report Available Online

- DESSC website
- ITS America website

