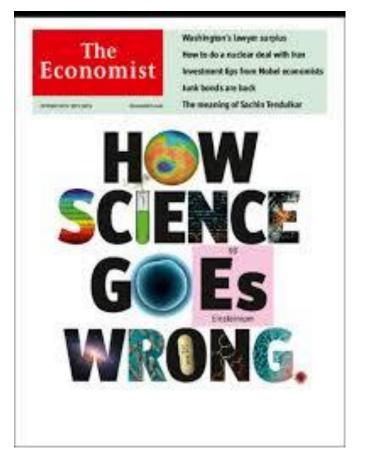


Open data in life sciences: why and how


David Osimo, The Lisbon Council Laia Pujol, ESADE

the ichoreounci

The need for open science

- 4th paradigm, all science becomes computational
- Replicability: 90% of scientists consider that "we are in a reproducibility crisis"
- Research waste: "85% of biomedical research efforts are wasted"
- Attrition rate: "more than 80% of new drugs fail, usually in the latestage of its development"

Osimo and Pujol, 2018. Opening Up Scientific Data For Innovation. Available at datalandscape.eu

Life science pioneering open science

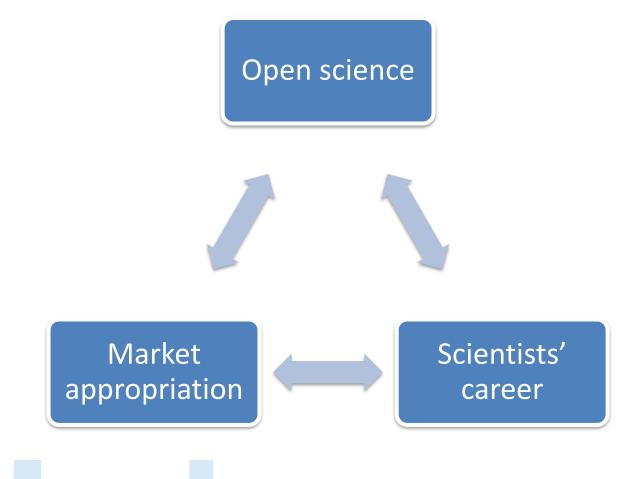
Field of Science	% OA
Multidisciplinary	66%
Agriculture, forestry, fisheries	42%
Biological sciences	39%
Basic medical research	38%
Other agricultural science	38%
Other medical sciences	36%
Clinical medicine	34%
Health sciences	28%
Mathematics	27%

YEAR	NO.	OF CITATIONS
Life sciences	563	
Medical sciences	29 4	
Earth and environmental sciences	246	
Multidisciplinary journals	164	
Chemistry, physics, and astronomy	146	
Engineering sciences	34	
Mathematics, statistics, and computer science	20	
Social sciences	20	
Health sciences	9	_
Culture	4	Nature
Economics, management, and planning	2	Biology
Information and communication sciences	2	Space
Law	2	History
		Climate
		Physics Social Science

Arts Language

20

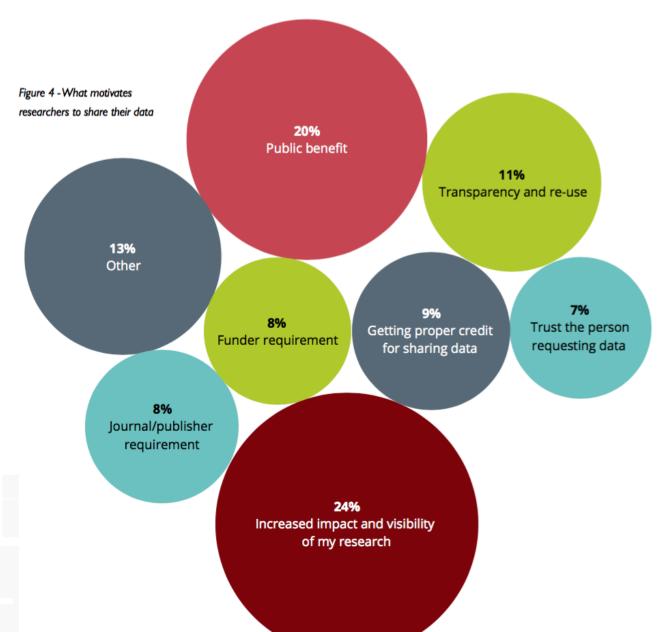
40


60

Source: EC Open Science Monitor , forthcoming

How?

the ishoreounci


Tensions, not barriers

the ichomeounei

Carrots, not sticks

- Recognition
- Embargo periods
- Discriminatory access)
- Reporting
- Labels & badges
- Reputation, citability
- Funding for data sharing
- Funders' mandates have limited impact and are seldom enforced
- Relations, not transactions: Data markets per se does not work

A continuum, not a binary choice

Source: OECD (2015), Data-Driven Innovation: Big Data for Growth and Well-Being, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264229358-en

he ishoreolihei

david.osimo@lisboncouncil.net

the ishomounci

Backup: GDPR

Open vs purpose-defined Innovation without permission Need for data hygiene

the ishoreounci