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Carbon Mitigation Technologies reduce or eliminate carbon dioxide
emissions from fossil fuel use, cement & steel production, and
other anthropogenic sources.

Negative Emissions Technologies remove carbon dioxide from the
atmosphere and store It underground or on the Earth’s surface.
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One Rationale for NET: Harder-to-Eliminate Emissions
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Carbon Removal in Climate Mitigation Pathways

“All pathways that limit global
warming to 1.5 °C with limited or
no overshoot project the use of
carbon dioxide removal (CDR) on
the order of 100-1,000 GtCO, over
the 21st century.”
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Global total net CO2 emissions

Billion tonnes of CO,/yr
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Source: IPCC (2018), Global Warming of 1.5 C, Summary for Policymakers, Figure SPM.3a
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Four Model Pathways Consistent with 1.5 °C

Breakdown of contributions to global net CO2 emissions in four illustrative model pathways
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P3: A middle-of-the-road scenario in
which societal as well as technological
development follows historical
patterns. Emissions reductions are
mainly achieved by changing the way in
which energy and products are
produced, and to a lesserdegree by
reductions in demand.

P2: Ascenariowith a broad focus on
sustainability including e nergy
intensity, human development,
economic convergence and
international cooperation, as well as
shifts towards sustainable and healthy
consumption patterns, low-carbon
technology innovation, and
well-managed land systems with
limited societal acceptability for BECCS.

P1: Ascenarioinwhich social,
business and technological innovations
resultin lower energy demand up to
2050 while living standards rise,
especiallyinthe global South. A
downsized energy system enables
rapid decarbonization of energy supply.
Afforestation is the only CDR option
considered; neither fossil fuels with CCS
nor BECCS are used.

Source: IPCC (2018), Global Warming of 1.5 C, Summary for Policymakers, p 20
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P4: Aresource- and energy-intensive
scenario inwhich economic growth and |
globalization lead to widespread '
adoption of greenhouse-gas-intensive
lifestyles, including high demand for
transportation fuels and livestock
products. Emissions reductions are
mainly achieved through technological
means, making strong use of COR
through the deployment of BECCS.
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Carbon Removal in Other Mitigation Pathways
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Carbon Removal Strategies & Technologies

Bl Terrestrial carbon removal and sequestration

B} Coastal blue carbon

Bioenergy with carbon capture and sequestration (BECCS)
Bl Direct air capture

B Carbon mineralization

B} Geologic storage & CarbonTech Markets
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Land-based carbon removal

(Terrestrial carbon removal and sequestration)

= Afforestation / reforestation
= Forest management practices

= Changes in enhance soil carbon storage

> Benefits: low cost, ecological co-benefits,
Improved resilience

> Limitations: easily reversible, comparatively
low carbon removal capacity, competition for
land use
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Reversing Soil Carbon Loss
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= Soils have enormous capacity to hold sl ok
carbon. e S ‘;’“""‘g“

= Heavily-used agricultural soils can lose
50-70% of their carbon.

= Nearly 75% of U.S. cropland acres have
lost soil carbon over the last 30 years.

Benefits of increasing soil carbon I
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Improved resilience to extreme

Source: ARPA-E (2016) ROOTS Program Overview, Fig 1
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Carbon Farming (Soil Carbon Sequestration)

Improved Agricultural Practices

No or low-till practices, cover crop
planting, and mulching can increase soil
fertility, yields, and carbon storage.

Bio-Tech, e.g. ARPA-E ROOTS

ST ol N

Selecting for plants with deeper and larger
root systems can increase the rate of
carbon absorption to the soil.
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Coastal Blue Carbon Restoration

» (Carbon stored in plants or sediments
In mangroves, tidal marshlands,
seagrass beds, and other tidal or
salt-water wetlands.

« Restoring and creating coastal
wetlands increases coastal carbon

> Benefits: low-cost, resilience benefits

> Limitations: competition with coastal
development
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Bioenergy with Carbon Capture and Sequestration (BECCS)

= Plant biomass Is used to produce
electricity, fuels, or heat wy Y

= Combined with carbon capture and ww

sequestration (CCS) technologies,
similar to those used for fossil power K? Co, Capture | [
plants

> Benefits: produce energy as a valuable
co-product to carbon removal

> Limitations: cost, availability of biomass, [ T— ]
resource-intensive, not always carbon i e,
negative |
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Potential BECCS Pathways

Biofuel w/ CCS — viabhle now!

Fermentation of corn to
produce ethanol provides the
best near-term opportunity for
BECCS deployment.

Low capture cost

ADM facility operating since
April 2017, 1 MtCO,/yr

not carbon-negative

Biochar (charcoal)

Biomass is heated or gasified

in the absence of oxygen to

produce biochar + an energy

product (syngas or bio-oil).

* Biochar can be used as a
soil amendment to
increase soil carbon

Biopower w/ CCS

Combustion of biomass to

generate electricity, combined

with CCS.

» Large resource potential

« Comparatively high cost

» Land- and resource-
intensive, runs into biomass
availability limits
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Direct Air Capture (DAC)

= Chemical separation of CO, from Low O
ambient air, for subsequent use or
StOrage AMBIENT AIR B A
Contactor
ENERGY
P & CO UH atio

= DAC technologies exist today, but

are expensive A %

> Benefits: effectively unlimited potential, can be
sited anywhere, small land footprint and water O, Geological Storage

needs, no impact to nutrient systems 1

|

> Limitations: high cost due to dilute CO, stream,
need for low-carbon electricity and heat

Credit: ICEF (2018) DAC Roadmap
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Direct Air Capture — How It Works, RD&D Needs

= Air contactor brings air into contact
with a sorbent or solvent that
selectively binds CO,

= Sorbent or solvent is then
regenerated—treated (usually with
heat) to release CO,

» Energy for regeneration Is one of the
main drivers of cost

> R&D needs: improved air contactors,
solvents or sorbents with low
regeneration energy requirements and
high CO, selectivity

Credit: ICEF (2018) DAC Roadmap
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Carbon Mineralization

= Carbon mineralization is the
process in which CO2 (in the air
or concentrated) reacts with
naturally-occurring minerals to
form solid mineral carbonates

= QOpportunities: using mine
tailings or industrial waste

> Benefits: stable over millions of
years, large capacity

> Limitations: fundamental
understanding of subsurface
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Negative Emissions | Estimated Upper Bound® for Potential
Technology Cost Rate of CO, Removal Possible Given
(5/tCO,) Current Technology and
L =0-20 Understanding and at <$100/tCO,
M =20-100 (GtCO,/y)
H=>100 UsS Global
Coastal blue carbon L 0.02 0.13
Afforestation/ L 0.15 1
Reforestation
Forest management L 0.1 1.5
Agricultural soils LtoM 0.25 3
BECCS M 0.5 3.5-5.2
Direct air capture H 0 0
Carbon M to H unknown nknown
mineralization
Total 1.02

* Upper bound assumes full adoption of agricultural soil conservé
practices, forestry management practices, and waste biomass capture.

Source: NAS (2018) Negative Emissions Technologies
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What to Do with Captured Carbon—Store It or Use It!

Carbon dioxide can be stored in:
Unmineable coal seams

Oil & gas reservoirs

Saline aquifers

Other (basalts, shale basins)

Source: DOE (2015) Carbon Storage Atlas
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Or it can be turned into a valuable product!

= 49 companies in the U.S. are developing
commercial uses for carbon.

= (O, can be turned into chemicals,
building materials, plastics and rubbers.

Source: Burns (2017) Carbon Capture Projects Map
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CarbonTech: A Trillion Dollar Opportunity

Current U.S. market for CO, is $8 billion PROBUCT $ IN MILLIONS

BUILDING MATERIALS $101,130

annually, but the total available market is over g Gt
$1 trillion.

I Aggregates $22,700
‘ WOOD-BASED PANELS $12,508

FUELS $882,149
® Gasoline $543,400
® Jet Fuel $38,760
® Diesel $186,660
® Natural Gas $83,705

Ethanol $23,550

201 Biodiesel $6,074
$1,069,281 PLASTICS $71,694
TAM ® High density polyethylene $25,393

Linear Low density polyethylene $20,502

Low density polyethylene $11,522

Polypropylene $14,276

$1,800

AGRICULTURE AND AQUACULTURE N/A

CONSUMER GOODS N/A

Source: Carbon180 (2018), CarbonTech Market Report TOTAL $1,069,281



Thank You!

Colin Cunlift | ccunliff@itit.org | @colin_cunliff

Erin Burns | erin@carbon180.org | @erinmburns
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