COLUMBIA | SIPA Center on Global Energy Policy

ENERGIZING AMERICA A Roadmap to Launch a

A Roadmap to Launch a National Energy Innovation Mission

Varun Sivaram, Colin Cunliff, David Hart, Julio Friedmann, and David Sandalow

"A plan to make the United States the world leader in clean energy innovation and rise to an existential challenge – creating exciting new jobs along the way. "
– John F. Kerry, 68th US Secretary of State

Overview

Authoritative reports have shaped U.S. energy innovation policy. This volume frames a new U.S. strategy for the next five years

2007

2008

2020

OLOGY COLUMBIA | SIPA ATION Center on Global Energy Policy

A bipartisan consensus has emerged around increasing federal energy RD&D funding...

Growing momentum and support...

- DOE energy budgets have *increased* in the past four years, despite Trump administration proposals for cuts
- A chorus of voices has set ambitious targets for federal clean energy RD&D
 - Proposed American Energy Innovation Act would invest in energy RD&D and comprise measures sponsored by 60+ Senators from both parties
 - Vice President Joe Biden's campaign platform pledges \$400 billion over ten years

COLUMBIA | SIPA Center on Global Energy Policy

Overview

Overview

But overall vision and details are scarce.

No strategy to achieve goals

- The 117th Congress and next administration need a roadmap.
- They will also need a set of immediate action items to hit the ground running and seize the political moment before momentum dissipates

This volume aims to fill that gap.

Part I answers the questions: "Why should the United States ramp up funding for clean energy innovation—and what is the right target?

Considerations

Advantages of elevating clean energy innovation as a national priority for: (a) Confronting climate change (b) Boosting U.S. competitiveness

Lessons from historical examples of U.S. innovation missions (e.g., defense, health, space)

Research on the benefits of federal RD&D spending and the absorptive capacity of U.S. research institutions and private firms for additional funding

Recommendation

The United States should urgently increase annual federal funding for clean energy RD&D.

\$25 billion by 2025

is an ambitious and achievable target for annual federal clean energy RD&D funding:

F INFORMATION TECHNOLOGY & INNOVATION FOUNDATION

 IGY
 Image: Columbia Sipa

 Image: ON
 Center on Global Energy Policy

Overview

How? Part II lays out a roadmap comprising three dimensions:

Technology Pillars

- 1. Foundational science & platform techs
- 2. Clean electricity generation
- 3. Advanced transportation systems
- 4. Clean fuels
- 5. Modern electric power systems
- 6. Clean and efficient buildings
- 7. Industrial decarbonization
- 8. Carbon capture, use, & sequestration
- 9. Clean agricultural systems
- 10. Carbon dioxide removal

Strategic Principles

- 1. Match the funding portfolio to critical decarbonization needs
- 2. Support all stages of the innovation pipeline
- Marshal the full capacity of the federal government
- Harness the innovative capacity of National Laboratories, universities and the private sector
- Partner with state & local gov'ts to support regional innovation
- 6. Set predictable long-term funding targets, while adapting to new data

Immediate Actions

1. The President should launch the National Energy Innovation Mission

 Congress should increase energy RD&D funding by 30% in FY22

3. The United States should reassert international leadership on energy innovation

GY COLUMBIA | SIPA ON Center on Global Energy Policy

PART 1

THE NEED TO INCREASE FEDERAL INVESTMENT IN CLEAN ENERGY INNOVATION

Clean energy innovation can accelerate deep decarbonization

In addition, investments in innovation can advance U.S. competitiveness in burgeoning energy industries

U.S. public investments in energy RD&D as a % of GDP trail those of global competitors

A critical moment to build U.S. leadership in new industries

- Around the world, countries from China to Germany are devoting some of their COVID stimulus packages to investments in new energy industries, from electric vehicle manufacturing to hydrogen RD&D.
- The United States is well positioned to lead on a range of nascent industries (e.g., carbon capture, advanced nuclear, digital energy systems, advanced transportation) and reap long-term benefits for the recovering economy

Private cleantech investment is returning—but much more is needed

Research and development spending as a percentage of revenue across major global industries, 2018 (Source: PwC, NSF)

Although clean energy technology deals are on the rise, valleys of death for promising technologies still exist, and corporate investment in clean energy RD&D is far lower than in a range of other industries. **Public investment is critical to** "crowd in" private funding

12

Center on Global Energy Policy

A goal of \$25 billion by 2025 for clean energy RD&D would be far from unprecedented

Tripling federal funding does not mean tripling the DOE budget. Critical to diversify funding across federal agencies and recipients.

U.S. federal funding for clean energy RD&D in FY 2020 by agency (Source: authors' estimates)

Department of Energy: \$7.1 billion

Other agencies: \$1.8 billion

- Department of Defense: \$804 million
- Department of Agriculture: \$205 million
- NASA:\$339 million
- National Science Foundation: \$417 million
- Other (e.g., NIST): \$169 million

Tripling this budget is feasible:

- Increases won't be concentrated in a single agency's budget (a la NIH doubling 1998-2003)
- Research universities, private firms, demonstration projects are all underfunded today

13

🚾 Columbia | Sipa

Center on Global Energy Policy

PART 2

A NATIONAL ENERGY INNOVATION MISSION

Part II: A detailed roadmap for tripling federal energy RD&D funding The federal government should organize the national energy innovation mission around ten technology pillars

Technology Pillars

- 1. Foundational science & platform techs
- 2. Clean electricity generation
- 3. Advanced transportation systems
- 4. Clean fuels
- 5. Modern electric power systems
- 6. Clean and efficient buildings
- 7. Industrial decarbonization
- 8. Carbon capture, use, & sequestration
- 9. Clean agricultural systems

10. Carbon dioxide removal

Rationale and explanation of this framework

- Each pillar groups technologies together based on **distinct applications** (the first pillar encompasses cross-cutting and basic research)
- This approach places the focus on achieving the functionality needed for deep decarbonization and helps policymakers address underfunded pillars
- Examples of mapping technologies to pillars:
 - Nuclear and renewable power generation are in Pillar 2: Clean electricity generation
 - Energy storage is split among Pillars 3, 4, and 5
 - Efficiency touches all pillars and is concentrated in Pillars 3, 6, and 7

Policymakers should heed six strategic principles to manage the growing clean energy RD&D portfolio (1/6)

Principle 1:

Match the funding portfolio to critical decarbonization needs 2018 U.S. GHG emissions vs. FY20 DOE clean energy RD&D funding (Sources: EPA, updated from EFI, 2019)

COLUMBIA | SIPA Center on Global Energy Policy

Policymakers should heed six strategic principles to manage the growing clean energy RD&D portfolio (2/6)

Principle 2:

Support all stages of the innovation pipeline

Example of a funding roadmap for the carbon dioxide removal technology pillar, which includes substantial demonstration funding (Source: EFI)

Policymakers should heed six strategic principles to manage the growing clean energy RD&D portfolio (3/6)

Principle 3:

Marshal the full capacity of the federal government to support energy innovation Proposed five-year tripling of federal clean energy RD&D funding by federal agency (Source: Authors' analysis)

Policymakers should heed six strategic principles to manage the growing clean energy RD&D portfolio (4/6)

Recommendations

Principle 4: Harness the innovative capacity of universities and the private sector Expand Energy Frontier Research Centers and Energy Innovation Hubs Fund National Labs to anchor regional

Fund National Labs to anchor regional innovation hubs, expand LEEP & other programs Make more grants to private firms, building on success of SBIR, ARPA-E, etc.

Expand user facilities and manufacturing assistance through Labs, Manufacturing USA, etc.

Policymakers should heed six strategic principles to manage the growing clean energy RD&D portfolio (5/6)

Principle 5:

Partner with state and local governments to support regional energy innovation Map of clean energy innovation activity across the United States (Source: Energy Futures Initiative, University of Maryland)

COLUMBIA | SIPA Center on Global Energy Policy

20

Policymakers should heed six strategic principles to manage the growing clean energy RD&D portfolio (6/6)

Principle 6:

Set predictable longterm funding targets, while adapting to new data Historical volatility of DOE energy RD&D spending from FY 1978–2018 (Source: Harvard Belfer Center)

RMATION TECHNOLOG

Columbia | sipa

Center on Global Energy Policy

21

To jumpstart the national mission, the 117th Congress and next administration should take three immediate steps in 2021 (1/3)

Immediate action #1:

The President should launch the National Energy Innovation Mission

- Shortly after inauguration, the President should issue a
 Presidential Policy Directive
- A White House Task Force, chaired by the OMB director and Assistant to the President for climate change, would present a national strategy and coordinate and speed implementation
- The PPD would assign responsibilities across federal agencies and designate the Secretary of Energy as agency lead to provide analytical support

Part II: A detailed roadmap for tripling federal energy RD&D funding To jumpstart the national mission, the 117th Congress and next administration should take three immediate steps in 2021 (2/3)

Immediate action #2:

Congress should provide roughly \$12 billion in funding for energy innovation in its FY22 budget

Proposed FY22 federal clean energy RD&D budget by technology pillar

GY COLUMBIA | SIPA Center on Global Energy Policy

Part II: A detailed roadmap for tripling federal energy RD&D funding To jumpstart the national mission, the 117th Congress and next administration should take three immediate steps in 2021 (3/3)

Immediate action #3:

The United States should reassert leadership on international energy innovation

Implementation:

Reengage with Mission Innovation and volunteer to lead MI 2.0 Global Challenges

Pursue new bilateral RD&D collaborations and commit to ramp up funding to **\$1 billion/yr** Inspire a race to the top: The best way to persuade other countries to boost public RD&D funding (the goal of MI 1.0) is for the United States the world's leading funder—to lead by example and spark a global competition

Energizing America will be out on September 15 on Amazon

Thank You!

GY COLUMBIA | SIPA Center on Global Energy Policy

FY 2022 funding proposal by federal agency and office

Funding Agency	Funding Office/Organization	FY 2020 Est.	FY 2022 Proposed	% Increase	Funding Agency	Funding Office/Organization	FY 2020 Est.	FY 2022 Proposed	% Increase
Department of Energy	Energy Efficiency and Renewable Energy (EERE)	2,228	2,682	20%		Agriculture Advanced Research and Development Authority (AGARDA)		50	,
	Vehicle Technologies Office (EERE/VTO)	396	488		Department of Agriculture	Agricultural Research Service (ARS)		158	í
	Bioenergy Technologies Office (EERE/BETO)	260	320			NIEA Agriculture and Egod Research Initiative (NIEA / AER I)	106	169	,
	Hydrogen & Fuel Cell Technologies Office (EERE/FCTO)	150	185				205	377	830/
	Solar Energy (EERE/SETO)	280	303		Department of Defense NASA		203	377	0370
	Wind Energy (EERE/WETO)	104	113			U.S. Army Research Laboratory (ARL)	155	202	
	Water Power (EERE/WPTO)	148	160			U.S. Naval Research Laboratory (NRL)	97	12/	
	Geothermal Technologies Office (EERE/GTO)	110	170			U.S. Air Force	254	332	
	Advanced Manufacturing Office (EERE/AMO)	350	432			Other (Defense-Wide, DARPA, ESTCP)	298	391	
	Building Technologies Office (EERE/BTO)	230	301			Subtotal, DOD	804	1,053	31%
	Office of Carbon Management (CM)*	472	812	72%			339	394	16%
	Carbon Capture (Power and Industrial)	115	300		National Science Foundation	Biological Sciences (BIO)	54	75	,
	Carbon Utilization	21	25			Computer and Information Science and Engineering (CISE)	24	. 34	4
	Carbon Storage	79	120			Engineering (ENG)	156	219	,
	Advanced Energy Systems/Crosscutting	123	150			Directorate for Mathematical and Physical Sciences (MPS)	162	217	,
	Negative Emissions Technologies (new office)		75			Other NSE	21	227	
	Methane Leak Detection and Mitigation	18	22				21	29	4007
	Office of Nuclear Energy (NE)	1,493	2,028	36%		Subtotal, NSF	417	584	40%
	Versatile Test Reactor	65	450		Other (NIST, NOAA, USGS,				
	Reactor Concepts RD&D	102	163		FHWA, EPA-ORD)		169	221	31%
	Fuel Cycle R&D	305	255		Total	N/A	8,894	11,758	32%
	Advanced Reactor Research, Development, and Demonstration	330	520		*This is the proposed new name for the current Office of Fossil Energy				
	Office of Electricity (OE)	190	520	174%					1.007
	Office of Science (SC)	2,151	2,572	20%	FY 2020 funding levels for non-DOE programs are estimates of the portion of funding that goes to clean energy / clean agriculture. Agency and Office				
	Advanced Scientific Computing Research (SC/ASCR)	173	200		totals include estimates of progr	ram direction and RD&D facilities (not shown in the table) and may be greater the	han the sum of I	RD&D progra	ıms.
	Biological and Environmental Research (SC/BER)	451	523						
	Basic Energy Sciences (SC/BES)	661	766						
	Fusion Energy Sciences (SC/FES)	671	740						
	Advanced Research Projects Agency-Energy (ARPA-E)	425	516	21%					
	Subtotal DOF	6.959	9.130	31%					

Previous federal innovation missions have shaped the U.S. economy and left important lessons for planning the next one

U.S. historical federal funding for R&D (Source: AAAS)

INFORMATION TECHNOLOGY COLUMBIA |SIPA & INNOVATION FOUNDATION Center on Global Energy Policy

28

COLUMBIA | SIPA Center on Global Energy Policy

