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AI has the potential to transform drug development by enhancing productivity across the entire 
development pipeline, boosting biopharmaceutical innovation, accelerating the delivery of new 
therapies, and fostering competition to help improve public health outcomes. 

KEY TAKEAWAYS 
 

• Drug development is a costly, lengthy, and risky process, marked by declining 
productivity. Bringing a new drug to market can cost billions of dollars and take over a 
decade, with fewer than 8 percent of early candidates succeeding. 

• AI has the potential to boost the efficiency of drug development, accelerating the delivery 
of new therapies and fostering competition, which could improve public health outcomes.  

• AI applications span the entire drug development pipeline—from speeding up drug 
discovery and enhancing clinical trials to streamlining manufacturing and supply chains. 

• For broader, effective adoption of AI in drug development, key challenges such as data 
quality and availability, potential for algorithmic bias, workflow integration, and regulatory 
guidelines must be addressed. 

• Key policy elements to advance AI adoption include public funding for basic research, 
workforce training, support for privacy-enhancing data sharing and access, and a risk-
based regulatory framework based on the risk level each AI use may pose to patients. 

• Such policies are essential to unlocking AI’s full potential in drug development, enabling 
faster delivery of potentially life-saving therapies and expanding patient access. 
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INTRODUCTION 
Drug development is a lengthy, complex, and costly process marked by extensive clinical trials, 
substantial risks, and stringent regulations. Artificial intelligence (AI) has the potential to 
transform the entire drug development process—from accelerating drug discovery and optimizing 
clinical trials to improving manufacturing and supply chain logistics. 

An important challenge for innovation policy is to ensure that spending on medicines drives the 
greatest return to society. Policies that impose price controls or weaken intellectual property (IP) 
protections may aim to lower drug prices but are known to dampen incentives for future drug 
research and development (R&D) and fail to improve R&D productivity. A more sustainable 
approach is to pursue policies that maximize the value of R&D investment. Enhancing R&D 
productivity, especially in light of declining returns and rising risks that increase the cost of 
capital—a major factor in drug development costs—offers a more effective path to maximize 
public health returns, promote equitable access, and drive economic growth.  

Technological advances hold promise for improving R&D productivity, accelerating access to 
novel therapies, and promoting health equity and competitiveness, ultimately delivering greater 
value for resources invested in medicines without stifling innovation. AI applications across 
various phases of drug development could enhance R&D productivity, increase drug output, and 
foster competition, driving innovation and expanding access to novel therapies to improve 
societal welfare. This increased drug supply can, in turn, drive consumer benefits through market 
competition. Furthermore, AI could accelerate the discovery of new therapeutic targets and drug 
candidates for the thousands of diseases that still lack treatment options. 1  

This report explores the potentially transformative role of AI across various phases of drug 
development, presenting early evidence highlighting how AI can enhance drug discovery, 
diversify clinical trials, and optimize drug manufacturing processes, ultimately leading to more 
efficient development with shorter timelines and improved outcomes. Additionally, the report 
identifies key challenges to broader AI adoption in drug development and offers several policy 
recommendations to support effective AI adoption, aimed at fostering innovation while ensuring 
patient safety. 

THE DRUG DEVELOPMENT PROCESS 
The drug development process is lengthy, risky, and costly.2 While estimates vary widely across 
therapeutic areas, recent figures suggest that the R&D cost of bringing a new drug to market 
could be up to $2.83 billion (uncapitalized), factoring in pre- and post-approval R&D, such as 
new indications, patient populations, and dosage forms—or, capitalized at an annual rate of 
10.5 percent, up to $4.04 billion.3 According to a 2021 Biotechnology Innovation Organization 
(BIO) report, it takes more than a decade for a drug to reach the market, and only 7.9 percent of 
Phase I clinical trial candidates ultimately receive approval.4  

Drug development is a complex, multiphase process that transforms scientific discoveries into 
safe, effective therapies. Key phases include drug discovery, preclinical testing, clinical trials, 
regulatory review, and manufacturing. (See figure 1.) In the drug discovery phase, scientists 
search for and identify therapeutic targets—such as proteins, including receptors and enzymes—
involved in a disease. They then screen thousands of potential therapeutic compounds to find 
those capable of modulating the target’s activity. Promising compounds are refined and 
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advanced to the preclinical testing phase, where lab and animal studies assess safety, efficacy, 
and pharmacokinetics/dynamics.5  

The discovery and preclinical phases together typically take about five to six years.6 After 
preclinical testing, these candidates move on to human clinical trials, which average 9.1 years.7 
Drugs that successfully complete clinical trials are submitted to regulatory authorities, such as 
the Food and Drug Administration (FDA), for approval based on evidence from both preclinical 
and clinical studies.8 A recent report finds that, on average, it takes 10.5 years for a successful 
drug candidate to progress from Phase I clinical trials to regulatory approval, following years of 
early research to discover a therapeutic target and design a drug to effectively modulate it.9 

Figure 1: The drug development process10 

A prominent method in modern drug discovery is the target-based approach, which involves 
designing drugs that interact with specific therapeutic targets implicated in a disease. This 
method relies on a deep understanding of a target’s role in the disease to develop effective 
therapies. The process begins with identifying a target based on the hypothesis that modifying its 
activity will impact disease progression. Target identification involves analyzing extensive 
genomic, proteomic, and other biological data to pinpoint key molecules involved in disease 
pathways. Target identification is followed by validation through in vivo and ex vivo models. 
During this discovery phase, techniques such as high-throughput screening, bioinformatics, and 
experimental validation are employed to identify and confirm these targets. The process is 
laborious and complex, requiring significant time and effort. Once validated, drug candidates 
proceed to clinical trials to evaluate safety and efficacy in humans.11  

Drug development is a complex, multi-phase process that transforms scientific discoveries into safe, 
effective therapies. Key phases include drug discovery, preclinical testing, clinical trials, regulatory 
review, and manufacturing. 

In practice, drug discovery often integrates target-based and phenotypic approaches. In 
phenotypic drug discovery, compounds are screened for their effects on disease-relevant traits 
(phenotypes) without prior knowledge of the exact molecular target or underlying mechanism. 
This method is particularly useful for complex conditions such as cancer and cardiovascular and 
immune diseases, which involve multiple genes and pathways. By combining these approaches, 
researchers can leverage their respective strengths to enhance the likelihood of developing 
effective therapies.12 
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In recent decades, advances in fields such as pharmacology, synthetic biology, and 
biotechnology—coupled with breakthroughs such as the decoding of the human genome in 2003 
and the advent of next-generation sequencing techniques in the mid-2000s—have significantly 
expanded scientific understanding of health and disease. Over the past decades, 
biopharmaceutical R&D investments in the United States surged from $2 billion in 1980 to $96 
billion in 2023.13 However, despite the significant increase in resources, several indicators 
suggest that biopharmaceutical innovation is slowing (or plateauing).14 Notably, there has as yet 
been no significant corresponding increase in the number of new drug launches, clinical trial 
success rates have decreased, and the overall length of drug development has increased. (See 
figure 2.)15 

Moreover, over time, it has become more expensive to develop new drugs. A Deloitte report notes, 
“The average cost to develop an asset, including the cost of failure, has increased in six out of 
eight years.”16 The 2019 version of the report concludes that the average cost of bringing a new 
biopharmaceutical drug to market has increased by 67 percent since 2010 alone.17 At the same 
time, Deloitte found that forecast peak sales per asset have already more than halved since 
2010. And significantly, the biopharma industry has experienced a downward trend in returns to 
pharmaceutical R&D: Deloitte found that the rate of return to R&D in 12 large-cap 
pharmaceutical companies declined from 10.1 percent in 2010 to 4.2 percent in 2015 and 
then to 1.8 percent in 2019.18 

Figure 2: FDA new drug approvals, 1985–202319 

 

Several factors have been proposed to explain the decline in R&D productivity and the growing 
complexity of biopharmaceutical innovation.20 These include shifts in the nature of science and 
technology, more stringent regulatory requirements, and a shift in R&D investments toward novel, 
high-risk, high-value targets that carry more uncertainty and difficulty.21 Further, advancements 
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in science, particularly in genetics, molecular biology, and systems biology, have revealed that 
many diseases are highly complex, resulting from a combination of genetic, environmental, and 
lifestyle factors. Such complexity often requires sophisticated treatments, such as targeted 
therapies or precision medicine, which require additional research and advanced technologies 
(e.g., gene editing, biomarker identification, etc.), adding time and cost to drug development. 

Beyond drug development—the process of discovering, designing, and testing new drugs— 
biopharmaceutical manufacturing, which involves producing drugs at scale, has also seen 
declining productivity. Total factor productivity (TFP), which measures the efficiency of all inputs 
(labor, capital, and materials) in production, decreased by nearly 2 percent annually from 2010 
to 2018, indicating reduced output capacity. (See figure 3.) While TFP has since improved, 
growing at an average annual rate of 2 percent, labor productivity—measured by output per hour 
worked—has declined by more than 3 percent per year, pointing to an ongoing challenge. (See 
figure 4.) This decline could stem from factors such as stricter regulatory demands, a need for 
more specialized handling and monitoring, or greater manufacturing complexity, which may be 
reducing labor input efficiency, even if overall TFP has improved. These factors are likely linked 
to the industry’s growing pursuit of more advanced treatments, such as cell and gene therapies, 
which require more intricate handling and resource-intensive manufacturing processes. 

Figure 3: Annual change in biopharmaceutical manufacturing TFP, 1988–202122 
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Figure 4: Annual change in biopharmaceutical manufacturing labor productivity, 1988–202123 

 

THE ROLE OF AI IN DRUG DEVELOPMENT 
Amid declining productivity in drug development, emerging technologies offer the potential to 
boost biopharmaceutical productivity. Advancements such as AI, quantum computing, CRISPR 
(clustered regularly interspaced short palindromic repeats), 3D bioprinting, organ-on-a-chip, and 
nanotechnology could significantly reduce the time and cost of bringing new therapies to market, 
making life-saving therapies more widely accessible to patients. Next-generation sequencing has 
enabled the production of large biomedical datasets, particularly genomics (the study of an 
organism’s genes) and transcriptomics (the study of RNA transcripts), among others.24 Along with 
data from experimental research and pharmaceutical studies, these vast datasets provide fertile 
ground for AI, which can analyze these datasets to uncover patterns and make predictions that 
serve as valuable inputs across different phases of drug development—from target identification 
and clinical trials to regulatory processes, manufacturing, and supply chain optimization.  

Quantum computing, while still in the early stages, can complement AI by solving problems 
beyond the capabilities of classical computers—such as molecular simulations and protein 
folding—both critical for modeling biological systems and identifying new drug candidates. 
Together, these technologies can accelerate biopharmaceutical innovation, offering more 
efficient pathways to novel therapies.25 

In Prediction Machines: The Simple Economics of Artificial Intelligence, Ajay Agrawal, Joshua 
Gans, and Avi Goldfarb described AI as a tool that transforms data into predictions, offering 
valuable insights to inform decision-making. In the biopharmaceutical industry, AI can analyze 
vast biological datasets to predict which therapeutic targets are linked to diseases, identify 
promising drug candidates, and forecast drug responses.26 Using advanced machine learning 

-15%

-10%

-5%

0%

5%

10%

1988 1992 1996 2000 2004 2008 2012 2016 2020



INFORMATION TECHNOLOGY & INNOVATION FOUNDATION  |  NOVEMBER 2024 PAGE 8 

techniques, particularly deep learning based on neural networks trained on large datasets, AI 
excels at recognizing patterns and generating predictions. Importantly, AI complements rather 
than replaces human scientists. A key AI limitation lies in performing advanced causal inference 
—an essential task that requires human judgment. While AI is adept at identifying correlations, 
such as linking a target to a disease, it struggles to grasp the complex underlying biological 
mechanisms that explain why these links exist—a crucial aspect of effective drug development. 

The vast amount of data provides fertile ground for AI, which can analyze datasets to uncover patterns 
that support each phase of drug development, from target identification and clinical trials to regulatory 
processes, manufacturing, and supply chain optimization. 

Still, AI provides a powerful tool that can significantly advance different phases of drug 
development, from discovery and preclinical testing to clinical trials, regulatory review, and 
manufacturing. In drug discovery, AI accelerates the analysis of large datasets to identify 
promising compounds, reducing the time and cost of finding new drug candidates. During 
preclinical testing, AI models simulate biological processes to predict how a drug will behave in 
humans, reducing reliance on animal testing. In clinical trials, AI can optimize patient selection, 
improve trial design, and speed up data analysis, leading to faster, more accurate outcomes. It 
can also streamline the regulatory process by assisting in the preparation of complex 
documentation required by agencies such as America’s FDA and Europe’s European Medicines 
Agency (EMA). Finally, in manufacturing, AI can enhance production processes, improving 
efficiency and ensuring consistent quality. By integrating AI throughout these stages, the process 
of bringing a new drug to market can become more efficient, possibly bringing much-needed 
therapies to market quicker. 

Facilitating Drug Discovery 
AI is often hailed as the future of drug discovery, with the ability to reduce the time and cost of 
identifying therapeutic targets and promising drug compounds, optimize drug chemical 
structures for greater efficacy, and enhance the molecular diversity of potential targets.27 
Traditional experimental methods for target discovery can be slow and limited in scope, but AI 
offers a more efficient approach by predicting a set of targets from a large dataset based on 
properties that suggest their involvement in disease.28 Scientists can then validate these 
predictions and develop therapeutic hypotheses about why those targets are linked to disease in 
order to develop safe and effective therapies.29 

Illustrative Example: Identifying Therapeutic Targets in Lung Cancer 
AI is transforming drug discovery by helping scientists identify potential therapeutic targets in 
cancer by analyzing vast genomic and clinical data.  

Goal: Suppose a lung cancer research team aims to identify new therapeutic targets to guide drug 
development. The team plans to use AI to predict genes associated with lung cancer that could 
serve as therapeutic targets. If a gene consistently shows higher expression levels in cancer 
patients, it could represent a promising target for developing a novel drug. 

Data: A dataset of 10,000 individuals, including 5,000 with lung cancer (labeled as 1) and 
5,000 without (labeled as 0). Contains data on each individual’s gene expression levels for 
20,000 genes, obtained through whole-genome sequencing. 
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The Role of Human Scientists: Before training the AI model, researchers apply their deep 
knowledge of biological processes and causal inference to narrow the list of genes from 20,000 
to a more relevant subset, say 500 genes. This selection process often involves formulating 
hypotheses regarding the genes’ causal role in cancer development, employing causal inference 
methods and reviewing existing scientific literature to identify genes linked to lung cancer 
progression, drug resistance, and treatment outcomes. By focusing on biologically relevant 
genes, scientists enhance the likelihood of identifying meaningful drug targets while managing 
the complexities of high-dimensional genomic data. This approach improves the predictive power 
of AI models and ensures that the selected genes have a solid biological foundation. 

The Role of AI: The AI model employs predictive modeling through statistical models—such as 
logistic regression, probabilistic regression, bagging (e.g., random forest), boosting, and others— 
which predict whether a patient has lung cancer based on gene expression levels. The models 
can identify patterns in the data, assign weights to each gene, and test the accuracy of its 
predictions on partitions of the dataset.30 

How It Works: Training the AI model involves analyzing gene expression levels for the subset of 
500 genes across the 10,000 individuals and looking for correlations with lung cancer status. AI 
models assign a weight to each gene, indicating the extent to which each gene contributes to 
predicting the likelihood of lung cancer. Genes with large positive weights—or higher 
importance—are flagged as potential drug development targets. 

In July 2021, Google DeepMind’s AlphaFold2 system solved a pivotal aspect of the long-standing 
“protein-folding problem,” a 50-year-old biology challenge. By predicting the 3D structures of 
nearly all known proteins from their amino acid sequences, AlphaFold2 has transformed a critical 
field of biological research. The system, using a vast database of known protein structures, 
reduced the time needed to predict protein structure from months to minutes. In collaboration 
with the European Molecular Biology Laboratory (EMBL), Google DeepMind made this data freely 
available to the scientific community.31 This breakthrough has profound implications for 
understanding protein function, which is key for designing more effective drugs.32 This 
achievement earned Demis Hassabis and John M. Jumper of Google DeepMind the 2024 Nobel 
Prize in Chemistry “for protein structure prediction.” The prize was also shared with David Baker 
“for computational protein design.”33 

AI is often hailed as the future of drug discovery, with the ability to reduce the time and cost of 
identifying therapeutic targets and promising drug compounds, optimize drug chemical structures for 
greater efficacy, and enhance the molecular diversity of potential targets. 

Additionally, AI can assist with bioactivity prediction—evaluating how effectively a drug interacts 
with its intended target—by identifying promising compounds from large candidate pools, 
thereby minimizing the need for costly, time-consuming experiments. In 2024, a research team 
developed ActFound, an AI model that employs pairwise and meta-learning techniques, trained 
on millions of data points from ChEMBL, a public bioactivity database maintained by EMBL’s 
European Bioinformatics Institute (EMBL-EBI). ActFound has been shown to be more accurate 
and less costly than traditional computational methods.34 
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Genentech’s Lab-in-the-Loop 
Genentech, a biotechnology pioneer founded in 1976 and now part of the Roche Group, is 
dedicated to combating serious, life-threatening diseases. Its notable achievements include the 
development of the first targeted antibody for cancer and the first drug for primary progressive 
multiple sclerosis. 

In 2023, Genentech partnered with NVIDIA to launch an AI platform named “lab-in-the-loop,” 
designed to accelerate the use of generative AI in drug discovery and development. Created by 
Genentech’s Prescient Design accelerator unit, the platform utilizes Genentech’s granular data to 
train algorithms for designing new drug compounds. These compounds are tested in the lab, and 
the resulting data is fed back to refine the AI algorithms. This interdisciplinary approach creates 
a continuous loop between wet lab work and computational methods, evolving experimental and 
clinical data into predictive models for potential drug candidates, thus accelerating the 
development of life-saving therapies.35 

Dr. Aviv Regev, executive vice president and head of Genentech Research and Early 
Development, described the lab-in-the-loop approach as:  

the mechanism by which you bring generative AI to drug discovery and development. When we 
try to discover drugs, we’re only as good as our data. We take the data and we use it to train 
algorithms; use these algorithms that we’ve trained to generate new kinds of molecules that we 
haven’t tested before, which we will take back to the lab, and generate experimental data for 
them again. And those test results will be sent to the AI, to improve itself, to get a better 
algorithm, and we repeat this process again and again and again until we reach a molecule that 
has all the right properties that we need for it to be a real medicine for patients.36 

In January 2024, Genentech began recruiting patients for a clinical trial to test the effectiveness 
of its experimental drug vixarelimab in treating ulcerative colitis, an inflammatory bowel disease. 
The drug had previously been tested only in lung and skin disorders. Traditionally, determining a 
drug’s potential for different indications can take years of laboratory work, but Genentech’s AI 
platform expedited this process, helping scientists determine in just nine months that 
vixarelimab could be a promising drug candidate for treating diseases affecting colon cells.  

Genentech leverages AI in drug discovery to deepen scientists’ understanding of health and 
disease, using these insights to develop more effective therapies. By integrating knowledge from 
fields such as biology, computation, genomics, and machine learning, Genentech aims to drive 
biopharmaceutical innovation. 

While AI is still in its early stages, several indicators suggest that it is already streamlining drug 
discovery. A study by the Boston Consulting Group (BCG) examines the research pipelines of 20 
AI-focused pharmaceutical companies and finds that 5 out of 15 AI-assisted drug candidates 
that advanced to clinical trials did so in under four years, compared with the historical average of 
five to six years.37 A 2023 report by BCG and the Wellcome Trust projects that AI-enabled efforts 
could reduce the time and cost of the drug discovery and preclinical stages by 25 to 50 
percent.38 And a 2019 report by the U.S. Government Accountability Office and the National 
Academy of Medicine notes that one company estimated AI-accelerated drug discovery could 
save between $300 million and $400 million per drug—stemming from improved R&D 
productivity, as AI increases the efficiency of capital investment, enabling better drugs to be 
identified earlier and more quickly.39 
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AI can significantly advance the main phases of drug development—from discovery and preclinical testing to 
clinical trials, regulatory review, and manufacturing. 

 

Several AI-enabled drug discovery companies have begun reporting significantly accelerated drug 
discovery timelines. In September 2019, Canadian biotechnology firm Deep Genomics 
announced its first AI-discovered therapeutic drug candidate aimed at treating Wilson’s disease, 
a genetic disorder that leads to excess copper in the blood, causing liver and neurological 
issues.40 This drug candidate was proposed just 18 months after target discovery efforts began, 
with the company’s AI platform analyzing over 2,400 diseases and 100,000 pathogenic 
mutations.41 In January 2020, British pharmaceutical company Exscientia, in collaboration with 
Japan’s Sumitomo Dainippon Pharma, reported that its AI-developed compound for obsessive-
compulsive disorder (OCD) had reached clinical trials in just 12 months, compared with the 
typical five- to six-year timeline. This compound was also reportedly the first AI-designed drug to 
enter clinical trials.42 In June 2023, Hong Kong- and New York-based Insilico Medicine 
announced that it had advanced its AI-developed drug for idiopathic pulmonary fibrosis, a 
chronic lung disease, to clinical trials in under 30 months.43 While this early evidence suggests 
that AI has the potential to significantly reduce the speed of drug discovery, it will take longer to 
determine how AI-developed drugs perform in clinical trials compared with their non-AI 
counterparts.44 

The BCG study reveals that AI-enabled drug discovery companies tend to concentrate their 
pipelines on well-established therapeutic target classes.45 Over 60 percent of their disclosed 
targets come from familiar classes, such as enzymes (e.g., kinases) and G-protein-coupled 
receptors. This focus on well-known targets likely reflects a strategy to mitigate the risks 
associated with drug development and to demonstrate the viability of their AI platforms. In 
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contrast, large pharmaceutical companies typically maintain more diverse pipelines, balancing 
both new and established targets.46 

Moreover, a recent report from Deep Pharma Intelligence shows that in the geographical 
landscape of AI adoption in drug discovery, the United States is a global leader. As of 2023, 
more than 50 percent of all AI-enabled drug discovery biotechnology companies were based in 
the United States, followed by 17 percent in Europe and close to 4 percent in China. (See 
figure 5.)47 

Figure 5: Share of companies using AI for drug discovery, 202348 

 

Moreover, the number of partnerships between large pharmaceutical companies and AI 
companies has surged, from 21 such new partnerships in 2017 to 66 in 2022, a more than 
threefold increase. (See figure 6, reproduced from the report.)49 According to a recent study by 
S&P Global Ratings, examples of such partnerships in drug discovery include AstraZeneca and 
BenevolentAI, which have partnered for target identification optimization; GSK and Insilico 
Medicine, which are working together on the identification of novel biological targets and 
pathways; and Pfizer and Genetic Leap, which are pursuing the development of RNA genetic 
drug candidates.50 
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Figure 6: Number of AI-focused partnerships for large pharma companies, 2017–202251 

 

Streamlining Clinical Trials 
Clinical trials, used to assess the safety and efficacy of proposed new therapies, represent a 
crucial step in the drug development process. However, conducting them is expensive, time 
consuming, and risky.52 As of 2020, the global clinical trial market was valued at $44.3 
billion.53 One study finds that the average clinical development time for a typical drug—from 
first-in-human trials to regulatory approval—is 9.1 years, though this can vary by therapeutic 
area, indication, trial design, and patient availability.54 A recent BIO report details that, on 
average, Phase I trials take 2.3 years, Phase II 3.6 years, Phase III 3.3 years, and regulatory 
review 1.3 years.55 Furthermore, fewer than 8 percent of drug candidates that enter Phase I trials 
succeed.56 Given these challenges, AI has the potential to streamline and improve clinical trials 
in several ways, making them faster and more effective and cost-efficient.57 

Enhancing Patient Eligibility and Recruitment 
One of the most time-consuming aspects of clinical trials is identifying and recruiting eligible 
patients, a process that can take up to one-third of the total trial duration. Moreover, 20 percent 
of trials fail to recruit the required number of participants. To address this challenge, researchers 
have explored relaxing overly strict eligibility criteria while maintaining patient safety.58 Trial 
Pathfinder, an AI system developed at Stanford University, analyzes completed clinical trials to 
assess how modifying criteria, such as blood pressure thresholds, impacts adverse events such as 
serious illness or death among participants.59 In a study of non-small cell lung cancer trials, Trial 
Pathfinder showed that loosening certain criteria—some of which, like lab test results, had little 
impact on the trial’s outcome—could double the number of eligible patients without increasing 
the risk of adverse events. This approach proved effective for other cancers, including melanoma 
and follicular lymphoma, and in some cases, even reduced negative outcomes by including sicker 
patients who stood to benefit more from the treatment in the trial.60 These findings suggest that 
relaxing restrictive eligibility criteria can expand patient access to promising new therapies. 
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After determining eligibility criteria, the next major challenge is recruiting patients, as failure to 
do so can produce delays and trial terminations.61 Typically, patient recruitment involves manual 
prescreening due to the complexity of clinical criteria text, which often includes confusing 
abbreviations and terminology.62 Criteria2Query is an AI system that can streamline this process 
by parsing eligibility criteria from natural language and converting it into structured, searchable 
data. Researchers can input inclusion and exclusion criteria in plain language that Criteria2Query 
translates into formal database queries that sift through electronic health records (EHRs) to find 
matching participants.63 This system aims to enhance human–AI collaboration, optimizing cohort 
generation by combining machine efficiency with human expertise to simplify complex concepts 
and train algorithms. Criteria2Query can accelerate recruitment and help include populations 
such as children and the elderly, who are often unnecessarily excluded from trials, thereby 
speeding up and diversifying clinical trials. 

Several AI-enabled drug discovery companies have begun reporting significantly accelerated drug 
discovery timelines. 

Beyond systems such as Criteria2Query, which match trials to patients, AI also improves patient-
to-trial matching. TrialGPT, for example, helps patients find suitable trials by predicting their 
eligibility for specific studies. Patients provide a description of their condition in plain language, 
and TrialGPT generates a score reflecting their fit for a given trial, along with explanations for 
each eligibility criterion. In testing, has TrialGPT achieved nearly human-level accuracy and 
reduced screening time for trial matching by over 40 percent, highlighting the potential of AI to 
enhance clinical trial efficiency and accelerate patient recruitment.64 In October 2023, the 
Dana-Farber Cancer Institute, supported by a Meta grant, began developing a novel open source 
AI platform to “computationally match patients with cancer to clinical trials.”65 This initiative is 
leveraging Meta’s large language model, Llama 3, to analyze unstructured clinical notes and trial 
eligibility criteria, enabling quicker and more accurate matching of patients to suitable clinical 
trials.66 

AI can also play a critical role in identifying biomarkers that predict therapy outcomes and 
disease progression, which is crucial for matching patients to the most effective clinical trials 
and therapies. A research team led by Dan Theodorescu, director of Cedars-Sinai Cancer in Los 
Angeles, developed the Molecular Twin Precision Oncology Platform (MT-POP) to discover 
biomarkers that predict disease progression in pancreatic cancer, one of the most lethal cancers. 
Their findings revealed that relying solely on CA 19-9—the only FDA-approved biomarker for 
pancreatic cancer—was suboptimal for predicting therapy outcomes.67 Instead, a set of multiple 
biomarkers provided far more accurate predictions. This multi-omics approach demonstrates the 
potential to optimize patient selection for clinical trials—as well as approved therapies—by 
identifying those most likely to benefit from specific treatments.68 Such advancements could 
help refine trial designs and improve the likelihood of success in developing new therapies for 
pancreatic ductal adenocarcinoma and other challenging diseases. 

Optimizing Clinical Trial Design 
AI can also enhance clinical trial design by optimizing aspects such as drug dosages, patient 
enrollment numbers, and data collection strategies. At the University of Illinois, researchers 
developed the HINT (Hierarchical Interaction Network) algorithm to predict trial success based 
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on factors such as the drug molecule, target disease, and patient criteria. Trained on 
pharmacokinetic and historical trial data, HINT has demonstrated high accuracy across different 
clinical trial phases and diseases.69 Building on this foundation, the team created SPOT 
(Sequential Predictive Modeling of Clinical Trial Outcome), which tracks trial progress in real 
time and refines predictions as more data becomes available, allowing for timely adjustments 
during the trial to improve outcomes.70 Moreover, the Illinois-based company Intelligent Medical 
Objects has developed SEETrials, which utilizes OpenAI’s GPT-4 to extract safety and efficacy 
data from clinical trial abstracts, helping clinical researchers evaluate different trial designs.71  

Further, AI-powered clinical trial design start-up QuantHealth has developed Katina, an AI 
platform that simulates hundreds of thousands of potential trial protocol combinations—such as 
various patient groups, treatment parameters (e.g., treatment dose, administration route, 
duration), and trial endpoints (e.g., tumor shrinkage)—to enhance the likelihood of trial success. 
Trained on extensive biomedical, clinical, and pharmacological data, the AI-guided workflow 
aims to enhance trial design and execution.72 In August 2024, QuantHealth reported that Katina 
had simulated over 100 trials with 85 percent accuracy. It could predict Phase II trial outcomes 
with 88 percent accuracy, significantly higher than current success rates of 28.9 percent, and 
Phase III trial outcomes with 83.2 percent accuracy—compared with 57.8 percent. The platform 
was also able to reduce trial costs and durations. QuantHealth reported that its collaboration with 
a pharmaceutical company’s respiratory disease team led to a significant $215 million reduction 
in clinical trial costs, achieved by shortening trial duration by an average of 11 months, requiring 
251 fewer trial participants, and using 1.5 fewer full-time employees to conduct the trial.73 

Streamlining Clinical Trial Protocols 
AI can also streamline the analysis of clinical trial protocols (CTPs), which are typically lengthy, 
complex documents exceeding 200 pages. CTPs cover everything from trial objectives and design 
to participant eligibility criteria and statistical methods, serving as a blueprint to conduct trials in 
a structured, compliant way. By using AI to extract valuable insights from unstructured 
documents, researchers can enhance participant diversity and reduce dropout rates, ultimately 
accelerating drug development by improving the efficiency of clinical trials.74 

For example, Genentech employed Snorkel AI to extract key information from over 340,000 CTP 
eligibility criteria. This effort led to better study designs and more accurate participant 
inclusion/exclusion criteria. The process helped visualize how different eligibility criteria could 
impact the demographics of trial participants, allowing for more informed decisions about trials. 
Snorkel AI identified patterns in clinically relevant characteristics and performed demographic 
trade-off analyses, enabling Genentech to adjust criteria to enhance trial diversity and success.75 

Improving diversity in clinical trials is essential for addressing health inequities. According to the 
FDA, concerningly, 75 percent of clinical trial participants for drugs approved by the FDA in 
2020 were white, while only 11 percent were Hispanic, 8 percent were Black, and 6 percent 
were Asian.76 This lack of diversity is problematic not only because certain diseases are more 
prevalent in specific underrepresented groups, but also because different populations may 
respond differently to therapies. For instance, Albuterol, the most-prescribed bronchodilator 
inhaler in the world, is less effective for Black children compared with their white counterparts. 
Since 95 percent of lung disease studies were conducted on individuals of European descent, 
this genetic difference went undetected for years.77 Scientists later linked specific genetic 
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variants involved in lung capacity and immune response to the reduced efficacy of Albuterol in 
Black children.78 In response to a lack of diversity in clinical trials, the FDA issued draft 
guidance in 2022 encouraging more inclusive representation.79 Pharmaceutical companies are 
increasingly leveraging AI, including tools such as TrialPathfinder and Criteria2Query, to safely 
recruit more diverse, representative participants, helping to improve trial outcomes for 
underrepresented populations.80 

Johnson & Johnson Leveraging AI to Diversify Clinical Trials and Transform 
Precision Medicine 
Data science and AI are transforming how J&J discovers, develops, and delivers new therapies to 
bring transformative medicines to people around the world. J&J is leveraging AI tools to build 
and scale capabilities that enhance the design, execution, and diversification of its clinical trials 
to facilitate drug development. For clinical trial design, J&J has developed an interactive, AI-
enabled platform, Clinical Studio, which uses real-world data (RWD)—including EHRs and 
patient registries—and internal operational data to enable digitization of protocols, providing 
transparency into clinical cost, protocol complexity, and patient burden and helping researchers 
develop fit-for-purpose protocols for clinical trials, without impacting the scientific rigor of the 
study. For example, the platform can be used to define and shape inclusion/exclusion criteria 
and associated outcomes, which has a direct impact on the cohort of eligible patients, including 
diversifying the patient pool. 

J&J’s internal platform, Trials360.ai, is helping to guide clinical trial site selection as well as 
engagement and patient recruitment efforts. The tool, coupled with clinical and operational 
expertise, aims to accelerate clinical development and trial recruitment by meeting patients 
where they are. With AI algorithms applied to real-world and clinical data, J&J can more 
accurately predict trial locations with the highest probability of enrolling patients, enabling it to 
place trial sites in locations where patients are, rather than establishing sites where trials have 
historically taken place. Findings show that sites ranked in the top 50 percent by its AI models 
enroll up to three times more patients than do those ranked in the bottom 50 percent. J&J has 
leveraged AI to review clinical data to identify potential data anomalies and query sites and 
resolve data discrepancies in an ongoing manner.  

Further, across therapeutic areas, J&J is leveraging a data-driven, AI approach to support the 
advancement of diversity, equity, and inclusion (DEI) in clinical trials—from trial planning to 
execution—aiming to ensure trial results are generalizable to diverse, real-world populations 
impacted by the diseases J&J is tackling. In immunology, J&J has set ambitious goals for several 
trials, and as of late 2023, it had surpassed its year-end diversity goals for those trials, five 
months ahead of schedule—supported by robust recruitment tactics and AI-supported site 
selection. In oncology, J&J is leveraging data science, coupled with clinical and operational 
expertise and community engagement, to help advance DEI in its multiple myeloma (MM) 
studies through clinical trial site selection and patient recruitment.  

A recent meta-analysis of 431 MM studies conducted between 2012 and 2022 across the 
industry shows that only 4 percent of enrolled patients were Black.81 Early enrollment data for 
five ongoing J&J MM trials indicate that a combination of human expertise and AI-driven insights 
has led twice as many Black patients to consent and enroll in clinical trials in the United States 
as compared with prior trials. 

https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.28_suppl.089.
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Optimizing Regulatory Submissions 
The regulatory submission phase of clinical trials is both resource intensive and time consuming. 
Regulatory affairs teams serve as the critical link between pharmaceutical companies and 
regulatory bodies, working to secure approvals in accordance with current guidelines. These 
teams compile the necessary data and documents for submission while ensuring that 
applications meet all regulatory requirements. AI can support this process by reducing the time 
needed to gather and standardize data, as well as by generating drafts based on templates and 
guidelines. Furthermore, AI can enhance workflows by providing timely insights, automating 
tasks such as data monitoring, document management, and adverse event detection as well as 
ensuring compliance with evolving regulations.82 

For example, Medidata’s Clinical Data Studio uses AI to monitor clinical trial data in real time, 
streamlining clinical data management, operations, and safety. The platform automates data 
reviews, identifies patterns through visualizations, monitors trial site performance and 
compliance, and mitigates data quality risks by detecting anomalies such as inconsistencies or 
outliers in patient data. This proactive approach enables clinical researchers to address potential 
issues early, helping to ensure data integrity throughout the trial and reducing the risk of 
compromising regulatory compliance. Ultimately, this helps improve trial efficiency and 
reliability, expediting the regulatory review process.83 

Another notable example is Veeva Vault RIM (Regulatory Information Management), an AI-
powered platform developed by Veeva Systems. The platform offers a comprehensive suite of 
services designed to manage submissions, ensure compliance, and streamline regulatory 
processes across regions. With its compliance tracking features, Veeva Vault RIM continuously 
monitors and updates evolving regulatory guidelines worldwide, enhancing the efficiency of the 
regulatory submission process.84 When new guidelines are issued by regulatory bodies such as 
the FDA or EMA, the platform alerts clinical trial teams, analyzes the changes, and recommends 
adjustments to trial procedures or documentation in real time to ensure ongoing compliance. 
Additionally, the platform automates the regulatory submission process by aggregating data from 
various sources, formatting it according to the latest guidelines, and generating submission-ready 
documents, which reduces manual effort and the risk of errors.85 

Enhancing Manufacturing and Supply Chains 
AI can also enhance drug manufacturing and strengthen supply chains by optimizing production 
processes, reducing downtime through predictive maintenance, improving demand forecasting, 
and streamlining inventory management, ultimately leading to greater efficiency. 

AI in Manufacturing 
In addition to its role in drug discovery, clinical trials, and regulatory submissions, AI can 
enhance manufacturing and help strengthen supply chains. It can optimize drug manufacturing 
by streamlining production processes, improving quality control, and reducing costs. Predictive 
analytics can identify efficient production pathways, forecast equipment failures, anticipate 
necessary maintenance, and improve resource allocation. AI can also support the development of 
continuous manufacturing systems, enabling more flexible, responsive drug production, and AI-
driven demand forecasting can help reduce both stockouts and overproduction.86 
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Asimov—Innovating Gene Therapy Design and Manufacturing With AI 
Asimov, a Boston-based pioneering bioengineering company, uses AI and synthetic biology to 
transform the design and production of therapies. Genetic engineering, the process of modifying 
DNA, holds immense potential for drug development by targeting diseases at their genetic roots. 
The process is vital for developing biologics, cell and gene therapies such as CAR-T, and 
precision medicine to tackle complex conditions such as cancer and inherited genetic disorders. 
Asimov’s AI-driven molecular simulations and computational biology accelerate the traditionally 
slow, labor-intensive, and trial-and-error genetic engineering process, making drug development 
faster, cheaper, and more reliable. 

Asimov’s AI-driven bioengineering tools apply to both drug design and manufacturing. In drug 
design, AI generates novel DNA sequences and simulates complex biological processes, 
expediting the identification of promising drug candidates. In manufacturing, these tools can 
increase the precision and efficiency of therapeutics production, supporting the creation of 
complex biologics such as antibodies and viral vectors. This is critical for improving the 
scalability, reliability, and cost effectiveness of drug manufacturing, especially for targeted cell 
and gene therapies that require customized production methods. 

Asimov’s AAV Edge platform is an example of the company’s innovation in gene therapy 
manufacturing. The platform optimizes the production of adeno-associated viruses (AAV), a type 
of virus used in gene therapies. Its AI-designed tissue-specific promoters restrict gene expression 
to intended tissues, ensuring, for example, that a therapy targeting heart disease is “on” in heart 
tissue but “off” in liver tissue to reduce toxicity. This is critical because while gene therapies 
hold significant potential, a key challenge is that they can cause liver toxicity. AAV Edge helps 
increase the precision, effectiveness, and safety of gene therapies while reducing side effects.87 

 

Currently, Asimov focuses on drug manufacturing, particularly drugs enabled by genetic 
engineering, including antibodies, protein biologics, cell and gene therapies, and RNA vaccines. 
By employing AI tools, Asimov’s suite of services seeks to improve drug efficiency and accelerate 
manufacturing timelines, yielding higher, faster, cheaper, and better therapeutic production. 
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Asimov’s future vision is to extend its AI-driven bioengineering solutions to the entire biotech 
space, including agriculture and food, industrial biotechnology, and environmental 
biotechnology, to accelerate innovation in these areas by automating traditionally slow, manual 
processes, increasing precision, and enabling customized solutions. 

AI in Supply Chains 
Drug shortages are a growing public health concern, with significant financial impacts on health-
care systems. In the United States alone, these shortages cost an estimated $230 million a year 
due to health-care expenses, productivity losses, and adverse patient outcomes. The root causes 
of such shortages include supply chain management challenges, inadequate business continuity 
planning, and market dynamics such as fluctuating demand.88 

The global pharmaceutical supply chain constitutes an elaborate network of manufacturers, 
suppliers, and distributors spanning multiple countries, rendering it vulnerable to disruptions 
from natural disasters, transportation delays, and regulatory hurdles. AI can help mitigate these 
risks by optimizing supply chain processes.89 It can analyze transportation costs, lead times, and 
supplier performance, enabling better route planning, cost saving, and improved delivery times. 
For example, the United States Pharmacopeia’s (USP’s) Medicine Supply Map employs AI to 
analyze millions of data points worldwide to predict disruptions, allowing timely interventions to 
prevent shortages.90 

Overall, AI can drive improvements in manufacturing efficiency, supply chain management, and the 
scalability of advanced therapies, contributing to faster, more cost-effective drug production and 
supply chain resilience. 

Merck employs an AI system developed by Aera to optimize its supplier network through data 
analysis and proactive recommendations. This system enables Merck to anticipate supply chain 
fluctuations, adjust production schedules, and reroute shipments, thereby enhancing efficiency 
and improving supply chain resilience.91 

Overall, AI can drive improvements in manufacturing efficiency, supply chain management, and 
the scalability of advanced therapies, contributing to faster, more cost-effective drug production 
and supply chain resilience. 

CHALLENGES FOR AI ADOPTION 
AI adoption in drug development faces several significant challenges. Data access and privacy 
issues present substantial hurdles, as stakeholders—including health-care providers, 
pharmaceutical companies, researchers, and federal agencies—must collect and share vast 
amounts of data to develop effective AI models. Improved coordination, both within and across 
organizations, is crucial to achieve this goal. Additionally, validating AI algorithms is essential to 
address concerns about the “black box” nature of how AI systems arrive at decisions and to 
mitigate possible biases, thereby building trust in these technologies. Integrating AI with existing 
workflows can also be challenging, especially in the face of unclear regulatory pathways. 
Misaligned incentives, including fears of job displacement, may further slow adoption.92 
However, with proactive strategies and enhanced collaboration between public and private 
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sectors, these challenges can be effectively addressed, paving the way for the successful 
integration of AI in drug development. 

Data Access, Quality, and Privacy 
AI can play a crucial role in supporting drug development, but its effectiveness hinges on the 
availability and quality of training data. Several types of data are essential for AI applications in 
this area. First, clinical data, including EHRs, provides information on patient medical histories, 
diagnoses, lab results, imaging data, and treatment plans. Second, genomic data, obtained 
through sequencing techniques, helps identify genetic variants and provides insights into gene 
function and regulation, which are vital for understanding disease mechanisms. Third, 
pharmaceutical data includes information on drug efficacy, adverse reactions, pharmacokinetics, 
and pharmacodynamics. Fourth, chemical and structural data is important for identifying and 
optimizing drug candidates from extensive compound libraries. Finally, data from scientific 
literature—such as research papers, clinical guidelines, clinical trial outcomes, and patents—
helps synthesize existing knowledge and identify gaps for new drug development.93 Together, 
these different types of data create a comprehensive picture that enhances the ability to identify 
promising therapeutic targets and drug candidates, target treatments to individual patients, and 
streamline the drug development process. Importantly, linking genotypes (genetic information 
found in genomic records) to phenotypes (observable traits found in clinical records) enables 
researchers to better understand how genetic variations influence disease risk and treatment 
responses and disease processes. This connection is particularly important for developing 
targeted therapies and advancing precision medicine. Yet, challenges remain in collecting, 
sharing, and linking this data to support AI applications. 

Two decades ago, the Human Genome Project (HGP) successfully decoded the human genetic 
code. A core principle that contributed to the success of this international scientific effort was 
data sharing.94 HGP leadership established the Bermuda Principles, which committed all project 
participants to electronically share data and make human genome sequences publicly available 
in order to advance scientific progress.95 Since then, advances in sequencing techniques have 
generated vast amounts of genomic data from millions of individuals, now stored in repositories 
around the world. The Bermuda Principles, adopted by journals and funding agencies, aim to 
ensure that published genome study data remains accessible to all, fostering further scientific 
discoveries.96 

However, the vast influx of diverse and sensitive data has prompted governments, funding 
agencies, and research consortia working with them to develop custom databases for managing 
this information. The existence of incompatible and non-shareable datasets further complicates 
efforts to link genomic and phenotypic data, which is key for breakthroughs.97 Uncovering the 
genetic causes of complex diseases such as cancer and cardiovascular disorders requires 
pinpointing multiple genetic risk factors across the genome. This is achieved through genome-
wide association studies (GWAS), which analyze the genotypes of hundreds of thousands of 
individuals, both with and without the disease, to identify relevant genetic variations.98 These 
studies integrate both genomic and phenotypic data, which often come from EHRs and medical 
cohort studies—such as the Framingham Heart Study, which tracked multiple generations to 
investigate cardiovascular risk factors—providing insights into how genetic variations contribute 
to disease. Yet, data integration problems present challenges for GWAS, as the success of these 
studies relies on the integration of large-scale genomic and phenotypic datasets. 
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Since 2005, over 10,700 GWAS have been conducted, generating vast datasets largely stored in 
controlled-access databases to protect personal information for legal and ethical reasons. 
Researchers must navigate strict vetting processes to access such data. For example, National 
Institutes of Health (NIH) grant recipients are required to deposit their GWAS data into an 
official repository, the Database for Genotypes and Phenotypes (dbGaP), while European 
researchers are encouraged to use the European Genome-Phenome Archive (EGA) housed at 
EMBL-EBI. Yet, despite such efforts, the process of accessing such publicly available data 
remains cumbersome.99 Moreover, a growing number of countries around the world have initiated 
large-scale genomic sequencing efforts on their own populations, including America’s All of Us 
Research Program, Genomas Brasil, the Qatar Genome Program, the Turkish Genome Project, 
and the Korean Genome Project, among others. Such global genomic sequencing initiatives are 
crucial for capturing genetic diversity across populations, which can lead to more inclusive and 
effective biopharmaceutical research. For now, though, how the data from these initiatives will 
be shared and integrated into existing workstreams and consortia remains unclear, diluting the 
potential of such large-scale datasets. 

Initiatives such as the Global Alliance for Genomics and Health (GA4GH) work to create 
technical standards to link disparate genomic databases globally.100 Additionally, the GWAS 
Catalog, an open-access collaboration between EMBL-EBI and the National Human Genome 
Research Institute (NHGRI), is working to standardize and centralize GWAS data to support both 
a deeper understanding of disease mechanisms and the discovery of new therapeutic targets and 
causal variants.101 Other efforts, such as the Human Cell Atlas (HCA), a global consortium 
creating publicly accessible, detailed reference maps of human cells, further seek to support AI-
enabled drug development and advance our understanding of health and disease.102 

Electronic Health Records 
In addition to genomic data, clinical data—often stored in EHRs—provides crucial details about 
patients’ medical histories and plays a vital role in deepening our understanding of disease 
mechanisms. Together, these two types of data are essential for uncovering how genetic 
variations (genotypes) influence observable traits (phenotypes) and disease outcomes, forming 
the foundation for building effective AI models for drug development. 

The push for electronic health information exchange began in 2009 with the signing of the 
American Recovery and Reinvestment Act (ARRA), which established the Health Information 
Technology for Economic and Clinical Health (HITECH) Act. This provision promoted the 
digitization of patient records to improve health-care delivery, allocating over $35 billion to 
support the adoption of EHRs by hospitals and clinics.103 Today, EHR adoption is widespread, 
with 96 percent of U.S. hospitals and almost 80 percent of office-based physicians using 
them.104 Some of the largest EHR systems include Epic Systems, Oracle Cerner, and MEDITECH. 
Epic holds the largest market share at 37.7 percent, followed by Oracle Cerner at 21.7 percent, 
and MEDITECH at 13.2 percent.105 Epic, the leading provider in the United States, is used by 
many prominent hospital systems and academic medical centers, including the Cleveland Clinic, 
the Mayo Clinic, and Johns Hopkins Medicine. 

Beyond the issues posed by privacy concerns, the presence of hundreds of EHR systems across 
the United States, each with distinct clinical terminologies and technical standards, complicates 
interoperability. True interoperability requires not just the exchange but also the use of 
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standardized data, a long-standing issue in the U.S. health-care system that continues to limit 
electronic data sharing. Moreover, achieving interoperability depends on collaboration between 
many stakeholders, including patients, providers, software vendors, legislators, and health 
information technology (IT) professionals. Yet, the health-care system remains fragmented, with 
data often treated as a commodity for competitive advantage rather than a shared resource for 
improving patient care.106  

Recently, the FDA pushed for an increased use of RWD—including EHRs, billing data, and 
administrative claims—in drug development. This data, rich in patient details including disease 
status, treatments, procedures, and outcomes, could enhance drug development. With the 
growing EHR adoption across the United States, the FDA has issued guidance on using EHR data 
in clinical research and regulatory submissions.107 However, integrating RWD with AI presents 
several challenges. EHRs are often inconsistently documented by clinicians, making it difficult to 
extract data, such as treatment outcomes, uniformly. Issues including missing data and selection 
bias further complicate the analysis. Additionally, the lack of standardization and harmonization 
across different data sources hinders both replication and reproducibility.108 

Despite these challenges, the creation of large research networks such as the national Patient-
Centered Clinical Research Network (PCORnet), the Observational Health Data Sciences and 
Information (OHDSI) consortium, and the Clinical and Translational Science Award Accrual to 
Clinical Trials (CTSA ACT) network have improved data sharing. These networks span multiple 
sites around the world, employing standardized data infrastructure, and provide access to a 
diverse patient population, enabling large-scale studies to explore factors influencing health and 
disease.109 

EHR-driven genomic research is valuable, as an integrated approach can augment GWAS by 
replicating the studies and extending conventional GWAS findings to underrepresented populations. 

In 2013, the National Science Foundation (NSF) convened a workshop to identify challenges 
and set a research agenda to achieve a national-scale Learning Health System (LHS). An LHS is 
an infrastructure that enables rapid data sharing and knowledge generation to inform health-care 
decisions, ultimately improving health outcomes. The agenda emphasized the need for 
systematic integration of data, evidence, and practice, highlighting the importance of 
standardizing data stored in EHRs. By facilitating access to comprehensive patient data, EHRs 
enable health-care providers to engage in continuous learning. The agenda noted that, to 
maximize the potential of EHRs in fostering a collaborative, well-functioning LHS, establishing 
standardized data-sharing protocols and ensuring interoperability are essential for adaptation and 
innovation in response to emerging health-care challenges.110 

Linking EHRs with other data sources, including genomic data, can further enable the study of 
drug-phenotype and drug-gene interactions. Researchers from the Vanderbilt Electronic Systems 
for Pharmacogenomic Assessment (VESPA) project have shown that EHR-based biobanks—
repositories of human biological materials—provide cost-effective tools for biomedical 
discoveries, as they allow for the reuse of biological samples across multiple studies and enhance 
research efficiency.111 Such EHR-driven genomic research (EDGR) is valuable, as an integrated 
approach can augment GWAS by replicating the studies and extending conventional GWAS 
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findings to underrepresented populations. This is because EDGR cohorts reflect the populations 
cared for in clinical settings, which are much more diverse than those typically represented in 
genomic research.112 EHR-linked genomic studies can also enable phenome-wide association 
studies (PheWAS), which analyze the effect of genetic variants across multiple diseases and 
traits captured in EHRs. A major obstacle, however, remains the need for the development and 
adoption of international standardized consent models from patients for the use of their clinical 
data in biomedical research, as consent regimens vary significantly across regions.113 

Lucia Savage, chief privacy and regulatory officer at Omada Health and former chief privacy 
officer at the U.S. Department of Health and Human Services (HHS) Office of the National 
Coordinator for Health IT, has highlighted that regulations governing the use of data collected 
through traditional health-care processes vary widely across countries. In the United States, there 
is more leeway for using patient data in tertiary research applications, such as developing AI 
models for drug development, as the Health Insurance Portability and Accountability Act (HIPAA) 
allows the use of patients’ health data for research without explicit consent when that data is de-
identified. In contrast, many other countries, including those governed by the EU’s General Data 
Protection Regulation (GDPR), impose stricter restrictions on such uses and the international 
transfers of personal data. These differences in legal frameworks make cross-border data sharing 
and access more challenging. Therefore, it is crucial to consider the regulatory environment in 
which the data was collected and explore possibilities for interoperability to navigate such 
challenges.114 

Gilead Using AI to Identify Underdiagnosed Hepatitis C Individuals115 
Gilead is leveraging AI to identify underdiagnosed individuals, particularly for diseases such as 
HIV and hepatitis C virus (HCV), where traditional screening methods are expensive and 
burdensome for patients. In diagnosis, there is a trade-off between privacy and data usability, as 
often, the higher the privacy standard, the less usable the data. Hence, striking a balance 
between privacy and usability is key. Too much privacy can make it difficult to identify patients, 
particularly from underserved communities. Greater data access, sharing, and interoperability, 
supported by privacy-enhancing techniques, could help with more accurate diagnoses. 

Gilead’s machine learning algorithm, trained on ambulatory electronic medical records (EMRs), 
aims to predict initial HCV diagnoses and identify undiagnosed HCV patients, prioritizing them 
for screening. The EMRs used to train the algorithm include data on age, gender, HCV-related 
predictors such as birth cohort, opioid usage, laboratory test results, diagnosis codes, treatments, 
data on social determinants of health, chronic health conditions, and other variables.  

HCV, one of the most common blood-borne viruses and a leading cause of liver-related illness in 
the United States, is the target of a World Health Organization (WHO) initiative to eradicate it as 
a public health threat by 2030. The National Academies of Science, Engineering, and Medicine 
(NASEM) have highlighted improved detection of undiagnosed HCV cases as central to 
eliminating the virus. Universal one-time screening is recommended in the United States, but it 
is difficult to implement in practice, and screening rates remain low. Gilead’s AI approach, 
trained on a large EMR dataset, requires fewer patients to be screened compared with traditional 
methods while improving precision. The AI model can prioritize patients for HCV screening, and 
has the potential to make resource allocation more efficient, reduce clinician workload, prevent 
disease progression, and lower health-care costs.  



INFORMATION TECHNOLOGY & INNOVATION FOUNDATION  |  NOVEMBER 2024 PAGE 24 

Integrating AI into EMR systems and clinical workflows shows significant potential for 
accelerating HCV elimination efforts. Effective targeting could improve diagnosis rates, reduce 
morbidity and mortality through earlier detection, and identify patients often overlooked by risk-
based screening. The AI algorithm generates continuous risk scores, allowing for a more nuanced 
triage process and targeted screening—patients with higher scores calculated from their EMR 
data can be prioritized for screening, diagnosis, and linkage to care. This data-based approach 
can help identify harder-to-find patients in a way that does not stigmatize individuals. It could 
also improve the allocation of finite health-care resources and the return on investment of 
screening programs, as well as the rates of HCV diagnoses, treatment, and transmission. 

Gilead’s AI use case demonstrates how machine learning and EMRs, when combined, present 
new opportunities to improve population health management and achieve better clinical 
outcomes. Moreover, it supports public policies that promote EMR adoption and interoperability, 
which could play a critical role in identifying underdiagnosed individuals, particularly within 
underserved communities. By enhancing data sharing and integration, these policies could not 
only streamline clinical workflows, but also help reduce health disparities, supporting efforts to 
improve health equity and ensure timely, effective care for all patients.  

Beyond RWD, there is growing interest in synthetic data—artificially generated by computer 
algorithms to simulate the statistical properties of RWD—as a scalable, cost-effective, and 
privacy-preserving alternative for training AI models. However, challenges remain: Synthetic data 
may not fully capture the complexity and variability of real clinical populations, such as diverse 
demographics and the intricate biological and clinical interactions that influence treatment 
responses and side effects. There are also questions about how well synthetic data reflects the 
evolving nature of diseases, treatment protocols, and patient populations. The use of synthetic 
data in drug development remains an emerging area of research.116 

Pharmaceutical Data 
Pharmaceutical data, alongside genomic and clinical data, plays a key role in biopharmaceutical 
innovation. While biopharmaceutical companies often prefer to keep their data private for 
competitive reasons, collaboration between companies and research institutions could 
significantly speed up drug development. Public-private partnerships (PPPs) that bring together 
academia, industry, and government offer a path forward, particularly in precompetitive research, 
where the risks are lower. One notable example is the Innovative Health Initiative (IHI), the 
largest biomedical PPP in the world, launched in 2008 by the European Union and the European 
Federation of Pharmaceutical Industries and Associations (EFPIA) to accelerate the development 
of next-generation therapies.  

By encouraging the sharing of data among academia, industry, and government, particularly in 
precompetitive research, PPPs are producing valuable training data for AI-enabled drug development. 

Other examples include the Alzheimer’s Disease Neuroimaging Initiative (ADNI), launched by the 
NIH’s National Institute on Aging (NIA) to advance Alzheimer’s research; Project Data Sphere, 
launched by the CEO Roundtable on Cancer to accelerate drug development by facilitating 
access to de-identified oncology clinical trial data; Open Targets, which uses biological data to 
identify and validate therapeutic targets; and the Structural Genomics Consortium, focused on 
advancing knowledge of human protein structures.117 By encouraging the sharing of data among 
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academia, industry, and government, particularly in precompetitive research, PPPs are producing 
valuable training data for AI-enabled drug development. 

Beyond PPPs, alternative payment models can provide incentives for pharmaceutical companies 
to share data. Data monetization allows companies to profit from their data by providing access 
to anonymized datasets on a subscription basis. For example, Flatiron Health, acquired by 
Roche, operates under this model by aggregating and analyzing de-identified oncology RWD to 
offer insights that enhance cancer care and accelerate drug development. This model treats data 
as a product, creating a continuous revenue stream for companies.118 

Role of Privacy-Enhancing Technologies 
When sharing data, a key consideration is ensuring that it can be done in a secure, privacy-
enhancing manner, given the confidential and sensitive nature of the data involved in drug 
development. Traditional methods of sharing data between different entities involve sending data 
to third parties, such as by creating copies of data for each entity or aggregating data in a single 
repository that all entities can access. Entities can maintain privacy of shared data through 
access controls, oversight, and legal mechanisms. However, newer decentralized methods for 
data sharing allow multiple entities to collaborate on AI model training without sharing raw 
internal data. Decentralized data sharing keeps data distributed across multiple locations, 
eliminating the need to transfer or aggregate it in a central repository. This method is particularly 
valuable in privacy-sensitive settings, as it enables collaboration while safeguarding sensitive 
information. In drug development, decentralized approaches enable different research 
institutions and companies to share data, supporting the development of safer, more effective 
therapies.119 

PETs can support the training of AI algorithms on vast biological, chemical, and clinical datasets, 
accelerating AI-enabled drug development. 

Key aspects of decentralized data sharing include a strong emphasis on data privacy, 
collaboration, and security. In this approach, each party retains control over its data, lowering the 
risk of leaks from third parties and minimizing the threat of a single point of failure that could 
compromise the entire dataset. Decentralized approaches are often supported by privacy-
enhancing technologies (PETs), such as secure multiparty computation (SPMC), federated 
learning (FL), fully homomorphic encryption (FHE), and differential privacy (DP), which enable 
privacy-enhancing access to and analysis of diverse data sources.120 PETs can support the 
training of AI algorithms on vast biological, chemical, and clinical datasets, accelerating AI-
enabled drug development.121 

Secure Multiparty Computation 
SPMC is a cryptographic method that enables multiple participants to collaborate on 
computations using private data without revealing it to each other, allowing teams to work 
together with internal data while maintaining its confidentiality. SPMC ensures that only the final 
results of a computation are revealed to participants without disclosing any intermediate 
information from a joint analysis, thereby providing a higher level of security.122  

In drug discovery, SPMC has several important applications. For instance, it can be used to 
predict interactions between therapeutic targets and drugs based on genomic and chemical data. 
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This is a critical step in developing promising drugs, and large datasets are required to train AI 
models to generate accurate predictions. Public datasets, including ChEMBL—a database of 
bioactivity data for drug-like compounds—often rely on contributions from academic institutions, 
pharmaceutical companies, and collaborative projects and help train such models on vast data. 
But they are only one piece of the puzzle. The integration of other sensitive data, including 
EHRs, could further enhance algorithms. Methods such as SMPC can help, and feasible SMPC 
protocols have been deployed for GWAS and drug-target interaction prediction problems. 
However, efforts to develop comprehensive SMPC protocols for AI-enabled drug discovery are still 
a work in progress.123 

Consider how SMPC can be useful in drug discovery. Pharmaceutical companies, even 
competitors, benefit from collaboration but must protect their proprietary data. For example, 
Company A, which specializes in high-throughput screening of small molecules, and Company B, 
which has comprehensive datasets of biological targets, can use SMPC to securely combine their 
datasets to discover compounds that interact with certain biological targets. In this manner, they 
can jointly identify potential drug candidates for further exploration, all while safeguarding each 
company’s proprietary data and enhancing their research.124 

Federated Learning 
FL emphasizes collaborative training of AI models while keeping the training data decentralized 
and local to each participant. In this approach, each participant trains the AI model on their own 
data and shares only the model parameters—rather than raw data—with a central server, which 
aggregates these parameters to enhance the global AI model. The refined model is then returned 
to the participants for further local training, enabling collaborative model development without 
exchanging sensitive data. Unlike SMPC, which allows multiple parties to jointly perform 
computations on private data, FL centers on the collaborative building of models. For instance, 
hospitals could use FL to collaboratively train a model that predicts patient outcomes based on 
their EHRs without exchanging any actual patient data.125 

In drug discovery, FL is particularly dynamic and offers numerous applications. A notable 
example is IHI’s MELLODDY (MachinE Learning Ledger Orchestration for Drug DiscoverY) 
project, which embodies a blend of cooperation and competition. This initiative emerged from a 
joint call by 10 of the world’s largest pharmaceutical companies aimed at developing predictive 
AI models for drug discovery while safeguarding data privacy. The collective dataset for this 
project will encompass over 10 million small molecules and more than 1 billion activity labels 
measured in biological assays, making it one of the largest FL-based efforts in the field.126 

Fully Homomorphic Encryption 
FHE is another powerful technique that enables computations on encrypted data without 
requiring decryption, ensuring that data remains secure.127 In 2017, experts from industry, 
government, and academia established the Homomorphic Encryption Standardization 
Consortium, which developed a standard in 2018 outlining security requirements for FHE 
applications.128 

In drug discovery, FHE presents a promising solution to privacy concerns by allowing scientists to 
perform computations on encrypted data, thus protecting sensitive information such as the 
structures of new drug compounds and genomic data.129 While algorithmic improvements have 
already enhanced the efficiency of FHE, widespread implementation still faces challenges, 
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including high computational demands and integration with existing data workflows. Advances in 
hardware acceleration and optimized algorithms could, however, enhance its use in privacy-
enhancing decentralized AI model building.130 

Differential Privacy 
DP, introduced by Cynthia Dwork in 2006, is a mathematical concept that enables data sharing 
while preserving individual privacy. The core principle of DP is that the outcome of a 
computation should remain nearly the same whether a single data point is included or excluded. 
This is achieved by adding calibrated noise to the results, effectively hiding individual 
contributions while maintaining the overall accuracy of the analysis. Although DP results are 
approximate and may vary with repeated analyses, sensibly calibrated noise enables AI models to 
balance privacy and utility. Still, DP requires careful tuning of noise levels to ensure that data 
utility is not compromised.131 

DP has proven particularly useful in applications such as drug sensitivity prediction. For 
example, a 2022 study shows that combining DP with deep learning, a technique known as 
differentially private deep learning, can effectively predict breast cancer status, cancer type, and 
drug sensitivity using genomic data, all while preserving individual privacy.132 

Beyond the importance of advancing the development of PETs—including SPMC, FL, FHE, and 
DP—to enable secure data sharing in AI-enabled drug development, it is crucial to make these 
tools accessible and user friendly for a wide range of scientists working in biopharmaceutical 
innovation. Organizations at the forefront of PET development include U.S.-based OpenDP, 
Duality Technologies, and Actuate, as well as the United Kingdom’s OpenMined.133 For example, 
Duality Technologies has collaborated with leading research institutions such as the Dana-Farber 
Cancer Institute to enhance oncology outcomes.134 

Algorithm Validation and Bias Mitigation 
As AI becomes increasingly integral to drug development, attributes such as model accuracy, 
reliability, transparency, and interpretability are important for creating effective therapies. 
However, the complexity of neural networks underlying AI often causes these models to function 
as black boxes. To tackle this challenge, eXplainable AI (XAI) is emerging as a branch of AI 
focused on developing models that are clearer and more interpretable.135 This enables 
researchers to identify and correct potential errors, such as inaccurate predictions due to flaws in 
the training data.136 Furthermore, drug development is an increasingly multidisciplinary process 
involving chemists, biologists, clinicians, and data scientists, and XAI helps make AI-driven 
insights more accessible to non-AI experts, fostering collaboration. The effective integration of 
human expertise with AI insights is essential for accelerating the development of safe and 
effective therapies.137 

The National Institute of Standards and Technology (NIST) defines trustworthy AI as “valid and 
reliable, safe, secure and resilient, accountable and transparent, explainable and interpretable, 
privacy-enhanced, and fair with harmful bias managed.”138 Organizations such as NSF’s Institute 
for Trustworthy AI in Law & Society (TRAILS) at the University of Maryland and the AI Now 
Institute are working to promote these principles for the use of AI across different industries, 
including biopharmaceuticals.139  

https://openmined.org/
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An increasingly important reason to validate AI is to identify and mitigate potential biases in the 
models. The FDA defines algorithmic bias as “the systematic deviation in model predictions or 
outcomes for certain data points or groups compared to others.”140 Bias can emerge at different 
stages of the drug development process—from biases in clinical research data used to identify 
new therapeutic targets and drug candidates, which may disadvantage underrepresented 
populations, to biases in manufacturing data that can undermine model performance and limit 
generalizability in the production of therapies. 

Without human oversight, AI systems can unintentionally learn and perpetuate biases present in 
their training data. In drug development, such biases may lead to inequitable outcomes, such as 
underrepresenting certain patient groups, which can skew predictions about drug efficacy or 
safety. This could result in therapies that are less effective, or even harmful, for these 
populations. Validating AI models to detect and correct biases ensures that these technologies 
support fairness and inclusivity in drug development, producing safer, more effective therapies 
for all patients.  

To promote equity in AI-supported drug development, it is important to use diverse, 
representative datasets. Yet, a 2009 study revealed that 96 percent of GWAS participants were 
of European descent, a figure that decreased to 78 percent by 2018.141 The lack of diversity in 
genomics research could introduce bias in AI algorithms and exacerbate health-care disparities if 
left unaddressed by both failing to account for differences in drug response among diverse 
groups and neglecting diseases prevalent in underrepresented populations.142 For example, as 
previously mentioned, Albuterol, the most-prescribed bronchodilator inhaler, is less effective in 
Black children due to genetic differences that had gone unnoticed for years, as 95 percent of 
lung disease clinical trial participants were of European descent. Identifying the specific genetic 
variants that contribute to differences in Albuterol response has both enhanced scientists’ 
understanding of drug efficacy and highlighted the value of inclusive research.143 

To address such biases, it is essential to use more diverse datasets that represent various 
demographic and clinical attributes and employ techniques such as data reweighting to balance 
underrepresented groups, cross-population model validation, and regular audits. Moreover, 
expanding genetic sequencing efforts and integrating clinical data from underrepresented groups 
through EHRs could help, because EHR data better reflects the diverse populations seen in real-
world clinical settings.144 

Beyond the potential consequences of algorithmic bias in clinical research, data biases can also 
arise in drug manufacturing, harming model performance and generalizability. For example, 
variability between production batches (e.g., differences in raw materials or slight equipment 
changes) can introduce biases if AI models are trained disproportionately on data from a 
particular batch, leading to inaccurate predictions and process adjustments that do not 
generalize across batches. Mitigating algorithmic bias throughout drug development, from 
clinical research to manufacturing, is therefore essential. 

Efforts to Reduce Algorithmic Bias 
Several efforts are underway to improve the representativeness of data used in biomedical 
research. One notable example is the NIH’s All of Us research program, launched in 2018. This 
large-scale genetic sequencing initiative aims to advance health equity by gathering data from a 
diverse population. With over $3.1 billion in funding, it seeks to create the world’s most diverse 
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genetic dataset for biomedical research. Currently, 80 percent of All of Us participants come 
from groups historically underrepresented in biomedical research, spanning different races, 
ethnicities, ages, geographies, access to health care, and disability status. The data includes 
survey responses, EHRs, genome sequences, and activity data from devices such as Fitbit. 
Researchers can access this information through a centralized cloud-based workbench. Since its 
first data release in 2020, over 200 peer-reviewed articles have been published based on this 
data.145 

All of Us fills a critical gap in genomics research by providing the enhanced diversity that is 
largely absent from most major biobank resources. For example, the UK Biobank, the world’s 
largest whole-genome dataset, has released about half a million genomes, with approximately 88 
percent coming from white individuals.146 A study on type 2 diabetes illustrates the strength of 
having a diverse dataset. With data from over 2.5 million individuals—also drawing from All of 
Us—including nearly 40 percent from non-European ancestries, the researchers identified 611 
genetic markers that could influence the development and progression of diabetes, 145 of which 
were previously unknown. These discoveries hold the potential to guide more precise, genetically 
informed diabetes care. Furthermore, population-specific differences in genetic variants linked to 
drug metabolism underscore that certain drugs may be safer or more effective for specific 
groups. Such findings are crucial in ensuring that AI-enabled drug development is equitable and 
reflective of diverse populations.147 

All of Us fills a critical gap in genomics research by providing the enhanced diversity that is largely 
absent from most major biobank resources. 

Integration With Workflows 
AI has the potential to reshape production processes in biopharmaceutical innovation, quickly 
scanning vast datasets to uncover correlations and make predictions. But AI should be viewed as 
a complement to, rather than a substitute for, human scientists. While AI excels at detecting 
patterns, it cannot discern causal relationships—such as whether a protein implicated in a 
disease actually causes the disease or is merely associated with it. Human expertise remains 
crucial for designing effective drugs, as scientists uncover and map such critical cause-and-
effect relationships, in which AI models can then ground their predictions.148 This can also help 
alleviate potential concerns about job displacement.149 By repackaging a job’s tasks into distinct 
categories—some suited for humans, and others for AI—we can clarify their respective, 
complementary roles in drug development.150 

Effective integration of AI into drug development workflows is crucial for leveraging both AI’s 
predictive power and human judgment to accelerate the development of safe and effective 
therapies.151 This integration involves substantial up-front costs for staff training and workflow 
system adjustments. Implementing these changes requires coordinated efforts, complementary 
assets, financial resources, management support, and long-return investment perspective.152 

POLICY RECOMMENDATIONS 
Supporting the adoption of AI in drug development requires a comprehensive approach that 
combines public policies to address a number of technical, operational, and regulatory 
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challenges while fostering innovation. The following are several recommendations for policies 
that could promote effective AI integration in drug development. 

Support for Privacy-Enhancing Data Sharing and Access 
A 2019 Information Technology and Innovation Foundation (ITIF) report argues in support of the 
development of a National Health Research Data Exchange in the United States, which could 
increase the availability of data to support data-driven drug development.153 One prominent 
initiative in this direction, which seeks to facilitate the secure, effective exchange of health data 
and advance interoperability on a national level, is the Trusted Exchange Framework and 
Common Agreement (TEFCA). TEFCA was introduced as part of the 21st Century Cures Act of 
2016 and implemented by HHS. Formally launched in early 2022, TEFCA went live at the end 
of 2023.154 It aims to create a nationwide network for the secure exchange of health data, 
enabling interoperability and sharing of EHRs among health-care providers, patients, and public 
health agencies.155 Seven organizations are currently designated as Qualified Health Information 
Networks (QHINs) under TEFCA, facilitating data sharing across various stakeholders, including 
Epic Nexus, eHealth Exchange, and Health Gorilla.156  

Additional public policies supporting EHR adoption, such as proposed legislation aimed at 
enhancing the use of EHRs in behavioral health services, could further help.157 Policies that 
promote the standardization of data formats across the biopharmaceutical ecosystem, making 
them less fragmented and disparate, would also enable AI models to share and access diverse 
datasets, enhancing robustness and effectiveness.158 Moreover, EHR systems require a deeper 
conceptual framework that can systematically capture the complexity of clinical mental models 
and integrate additional data, such as patient-reported outcomes, to improve AI model training. 

PETs could further support and encourage the sharing of different sources of data. While 
significant advances have been made in PETs, more progress is needed in their development, 
implementation, and adoption. Recent policy efforts aim to bolster these advancements. In 
October 2023, the White House issued the Executive Order Advancing a Vision for Privacy-
Enhancing Technologies spearheaded by the Office of Science and Technology Policy (OSTP).159 
This order calls for the design, development, and deployment of PETs. Subsequently, in April 
2024, the Privacy Enhancing Technology Research Act (H.R.4755) passed the House and as of 
this writing is under consideration in the Senate.160 This legislation would mandate NSF to 
support research into PETs and directs OSTP to coordinate efforts with other federal agencies to 
accelerate their development, deployment, and adoption. Key organizations driving PET 
innovation include U.S.-based OpenDP, Duality Technologies, Actuate, and U.K.-based 
OpenMined.161 Policies that support PET advances can foster increased use of sensitive data in 
biomedical research and thus accelerate AI-enabled drug development.162 

Further, governments could support the establishment of data banks—large-scale repositories 
that collect clinical, genetic, and pharmaceutical data—to enhance the training of AI models. A 
notable example is the NIH’s All of Us program, which, by creating a comprehensive and diverse 
data resource, can serve as training data for AI-enabled biopharmaceutical research. Another 
example is the Cancer Moonshot Initiative, which fosters collaboration and data sharing across 
the health care and pharmaceutical sectors to advance cancer treatment.163 

In addition to privacy-enhancing data sharing approaches, other strategies could further 
encourage cooperation across the biopharmaceutical ecosystem. One promising approach is the 
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establishment of PPPs to foster collaboration among industry, academia, and government 
stakeholders. Such PPPs can align the interests of public institutions and private companies by 
addressing key concerns such as IP rights and competitive advantages. While biopharmaceutical 
companies often keep their datasets confidential to maintain a competitive advantage, fostering 
collaboration between companies and research institutions could accelerate AI-enabled drug 
development. This collaborative approach could lead to safer, more transparent, more 
reproducible innovation processes, while also reducing redundancy and associated risks.164 

A number of PPPs have emerged to focus on precompetitive research, a phase in which data 
sharing does not compromise a company’s competitive edge. In this setting, companies can 
benefit from shared research costs, access to larger and more diverse datasets, and streamlined 
processes. This model has been successfully implemented in different regions. For example, IHI, 
the world’s largest biomedical PPP, aims to enhance the EU’s competitive position in 
pharmaceutical research and accelerate the development of next-generation therapies through 
initiatives such as its aforementioned federated learning platform MELLODDY.  

Policies that support PET advances can foster increased use of sensitive data in biomedical research 
and thus accelerate AI-enabled drug development. 

Another example is the ADNI, launched in 2004 the NIH’s National Institute on Aging (NIA). It 
remains the largest PPP in Alzheimer’s research, convening leading research centers across the 
United States, NIA, pharmaceutical companies, and foundations to advance Alzheimer’s disease 
research. ADNI’s publicly available database, hosted by the Laboratory of Neuroimaging, has also 
made significant contributions to enhancing the understanding of complex diseases beyond 
Alzheimer’s, fostering broader scientific discoveries.  

As mentioned, another prominent PPP is Open Targets, a collaboration between research 
institutions such as the EMBL-EBI and the Wellcome Sanger Institute, as well as pharmaceutical 
companies such as Pfizer, Genentech, and GSK. Its goal is to use biological data to identify and 
validate therapeutic targets for drug discovery, making data publicly available to accelerate 
progress.165 

The Structural Genomics Consortium (SGC) is a PPP that unites academic researchers and 
pharmaceutical companies such as Johnson & Johnson, Pfizer, and Genentech. It focuses on 
open-access research aimed at understanding the structure and function of human proteins and 
generates publicly available data such as protein structures and chemical probes.166 Building on 
SGC’s open-science model, a new initiative called Conscience was launched in 2023, in 
partnership with SGC and supported by a $49 million investment from the government of 
Canada. Conscience brings together academics, researchers, industry, and community leaders to 
address market failures in drug development, particularly in areas such as neurodegenerative 
diseases, pandemic preparedness, rare childhood diseases, and antimicrobial-resistant bacteria. 
Conscience’s approach relies on two key pillars: AI and open science. By fostering collaboration 
among companies and researchers, Conscience aims to advance best practices in AI, build tools 
to accelerate drug discovery, and create benchmarks for shared learning. Its open-science model 
encourages the exchange of data and discoveries between organizations, reducing duplication, 
inefficiencies, and costs. Together, these initiatives fuel an entire ecosystem approach to 
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innovation that bridges the gap between industry, academia, government, and nonprofit 
organizations to accelerate AI-enabled drug development.167 

These initiatives highlight how PPPs can encourage data sharing in precompetitive research, 
support the training of AI models, and therefore accelerate AI-enabled drug development when 
structured effectively.168 Collaborations between academia, industry, and government can 
establish secure, privacy-enhancing frameworks for data sharing and analysis, benefiting multiple 
stakeholders across the biopharmaceutical ecosystem and driving innovation while promoting 
principles such as reproducibility, transparency, and explainability and reducing risks and 
redundancies. 

Public Funding 
Governments could significantly advance research in AI-enabled drug development by increasing 
funding for key initiatives. For example, NIH’s Bridge2AI Program seeks to accelerate AI 
adoption in biomedical research through interdisciplinary collaborations and large-scale data 
creation.169 Further, the NIH Small Business Innovation Research (SBIR) and Small Business 
Technology Transfer (STTR) programs provide seed funding to small businesses, including those 
developing AI solutions for drug development, while NSF’s Directorate for Technology, 
Innovation, and Partnerships has supported AI-enabled platforms to speed up drug discovery.170 
The Advanced Research Projects Agency for Health (ARPA-H) also leads several initiatives to 
enhance AI-enabled drug discovery.171 

Public funding—as a precursor and complement to biopharmaceutical company investments—is 
essential for several reasons. It supports foundational research, such as AI studies on new drug 
development algorithms and basic science applications of AI that may not yield immediate 
commercial returns but can pave the way to major breakthroughs and further incentivize private 
sector investment. By funding research without direct commercial application or with high 
uncertainty, public funding can foster innovation that might otherwise be missed. Moreover, 
public funding can help increase efficiencies, de-risk early-stage innovation, and ensure that AI 
tools address public health needs, enhancing health equity. This is crucial for tackling unmet 
medical needs in areas such as antimicrobial/antibacterial research, where private investment 
may be insufficient. 

By funding research without direct commercial application or with high uncertainty, public funding can 
foster innovation that might otherwise be missed. 

For example, ARPA-H’s mission to address large-scale health challenges mirrors past efforts such 
as the Defense Advanced Research Projects Agency’s (DARPA’s) work to develop the early 
infrastructure for the Internet and Global Positioning System (GPS) technology. These past 
successes show how public funding can drive transformative advances by supporting high-risk 
innovations that can later be commercialized. Public funding also encourages open science and 
collaboration, resulting in the creation of public goods such as large datasets, tools, and 
infrastructure that are available to all agents in the drug development ecosystem. Finally, public 
funding can address ethical and privacy concerns by ensuring that AI development aligns with 
guidelines such as fairness, transparency, and the mitigation of bias to support equitable AI-
enabled drug development.  
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Governments can also promote collaboration between academia and the private sector to advance 
AI research and applications in drug development. For example, the Accelerating Medicines 
Partnership program, a PPP launched between NIH, the FDA, biopharmaceutical companies, and 
nonprofit organizations in 2014, could be expanded to support AI-enabled drug discovery.172 
Finally, offering incentives for companies investing in AI-based drug development could lower 
financial barriers to adoption, encouraging the creation of AI tools and their integration into drug 
development pipelines. 

Education and Workforce Development 
Governments should also invest in AI and data science training to prepare the next generation of 
scientists for AI-supported drug development, including updating medical and pharmaceutical 
curricula to reflect advances in AI. The future of drug development depends on an effective 
partnership between human scientists and AI technologies, wherein scientists leverage their 
causal inference skills to convert AI predictions into effective therapies. This collaboration not 
only enhances the drug development process, but also ensures that therapeutic innovations are 
grounded in robust scientific understanding. To ensure effective human-AI collaboration, policies 
must encourage the integration of AI into biomedical research, support cross-disciplinary 
collaboration, and establish best practices.173 

Agencies such as NSF can support research on the complexities of human-AI interactions, while 
the Department of Labor can help prepare workers for an AI-intensive job market through training 
programs focused on high-level problem-solving and inference tasks. Embracing the strengths of 
both human creativity and AI can help drive biopharmaceutical innovation. Programs such as 
NSF’s AI Research Institutes exemplify this approach, advancing AI research and training 
scientists, including in biomedical fields.174 Similarly, NIH’s Big Data to Knowledge (BD2K) 
initiative provides interdisciplinary training to equip researchers with AI and biomedical data 
science skills to accelerate innovation.175 

The future of drug development depends on an effective partnership between human scientists and AI 
technologies, wherein scientists leverage their causal inference skills to convert AI predictions into 
effective therapies.  

Developing an AI talent pipeline is key. Policymakers should promote AI-related education at all 
levels, ensuring courses count toward graduation requirements, expanding access to STEM-
focused charter schools and incentivizing computer science in higher education. As AI reshapes 
drug development and alters traditional roles, reskilling workers in both the public and private 
sectors could help ensure the smooth integration of AI into existing workflows.176 Additionally, 
policymakers could establish new immigration channels for AI professionals to attract and retain 
talent in the field.177 The October 2023 White House Executive Order on the Safe, Secure, and 
Trustworthy Development and Use of Artificial Intelligence acknowledged the importance of 
foreign AI expertise and advocated for policy reforms to modernize immigration pathways for AI 
experts.178 Such measures could help the United States maintain its leadership in a highly 
competitive global market for AI expertise. 
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Regulatory Guidelines 
Pharmaceutical regulatory agencies have seen a surge in AI-enabled drug applications and are 
actively working to understand the regulatory implications of these tools. In 2021 alone, the FDA 
received over 100 such submissions for AI applications ranging from drug discovery and clinical 
research to post-market surveillance and advanced manufacturing.179 

In September 2024, following months of consultations with developers, academics, and 
regulators on a prior draft, EMA issued a reflection paper on AI in drug development.180 The 
paper encourages a risk-based approach for developing, deploying, and monitoring such tools, 
with risk depending on the specific AI use case. For example, AI applications in drug discovery 
are typically considered low risk, since drug candidates proposed with AI assistance would still 
undergo the usual rigorous clinical trial testing. In nonclinical development, AI models that 
replace or reduce animal testing must adhere to Good Laboratory Practice (GLP). In clinical 
trials, regulatory risks are lower in early-stage trials (e.g., AI used for patient selection and 
recruitment) but increase in later stages. In manufacturing, AI uses in process design, 
optimization, scale-up, and quality control should follow the quality risk management principles 
to ensure patient safety and product quality.181 

Policies that clarify and simplify the review process for the use of AI/ML in drug development—and 
adopt a risk-based approach, recognizing that some applications, such as in drug discovery, are lower 
risk than others—could encourage the wider adoption of these tools. 

In 2023, the FDA released a discussion paper, “Using Artificial Intelligence and Machine 
Learning in the Development of Drug and Biological Products,” which outlines different use 
cases of AI/ML in drug development and emphasizes the adoption of a risk-based approach to 
evaluating such tools, based on the risk to the patient of the particular AI application.182 The 
FDA has solicited feedback from stakeholders on its paper, and aims to finalize the guidance by 
late 2024, intending to safely expand the adoption of AI/ML tools in drug development.183 

Policies that clarify and simplify the review process for the use of AI/ML in drug development— 
and adopt a risk-based approach, recognizing that some applications, such as in drug discovery, 
are lower risk than others—could encourage the wider adoption of these tools. To spur their 
adoption globally, regulators from different countries could also coordinate to create harmonized 
standards and approval processes for AI-supported drug development, benefiting both regulatory 
agencies and pharmaceutical companies operating in multiple countries. 

Moreover, the International Council for Harmonisation of Technical Requirements for 
Pharmaceuticals for Human Use, which works to develop guidelines to promote global 
consistency in regulatory processes, is also seeking to harmonize how AI is employed in drug 
development, ensuring safety, efficacy, and quality across international borders.184 

CONCLUSION 
Drug development has become increasingly complex, marked by longer timelines, higher risks, 
and rising costs. This complexity stems from several factors. First, scientists’ deepening 
understanding of biological processes related to health and disease requires more advanced 
research methods and technological tools. Second, stricter regulatory requirements demand 
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extensive data collection and analysis to ensure safety and efficacy. Third, a growing emphasis 
on complex diseases, such as cancer and neurodegenerative disorders, requires innovative 
approaches, including new drug modalities. Fourth, increased efforts to diversify clinical trials 
have resulted in more comprehensive trial designs. Finally, the growing demand for precision 
medicine, which requires targeted approaches, further adds to this complexity. 

Emerging technologies, particularly AI, hold the potential to transform biopharmaceutical 
innovation. AI can enhance various phases of drug development, from accelerating drug 
discovery and optimizing clinical trials to streamlining regulatory review and improving 
manufacturing and supply chains. These advances could significantly boost R&D productivity by 
enabling more efficient resource use, faster identification of viable drug candidates, and fewer 
costly clinical trial failures—ultimately fostering greater innovation and increasing the likelihood 
of bringing a higher number of effective, novel therapies to market sooner. 

By expediting each stage of drug development, AI can accelerate access to breakthrough 
therapies, helping to meet urgent public health needs and reduce the disease burden on society. 
As illustrated in the case studies throughout this report, AI has a wide range of applications: It 
can improve inclusivity in clinical trials to ensure therapies are effective across diverse 
populations, thereby advancing the policy goal of health equity; when combined with EHRs, AI 
can help identify underdiagnosed individuals, particularly in underserved communities, reducing 
health disparities; in drug discovery, AI can accelerate therapeutic target identification and drug 
design; and in manufacturing, AI can enhance the design and production of gene therapies. 
Boosting research productivity, AI strengthens the biopharmaceutical sector’s contribution to 
innovation, promoting jobs, economic resilience, and global competitiveness. Moreover, AI can 
streamline regulatory processes by enhancing data quality and automating compliance, allowing 
for faster, safer access to essential therapies while maintaining rigorous safety standards. 

A supportive public policy framework is key for the effective and responsible integration of AI in 
drug development. Key elements include public funding for basic research related to AI in drug 
development; educational initiatives to prepare the workforce for an AI-supported future in 
biopharmaceutical innovation; support for tools that enable privacy-enhancing sharing of and 
access to high-quality data; collaborations through efforts such as PPPs; and the development of 
a risk-based regulatory approach for evaluating AI tools, tailored to the level of risk each AI 
application may pose to patients. Such policies are essential to unlock AI’s full potential in drug 
development, accelerating the delivery of and broader access to potentially life-saving therapies. 
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